cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A055267 a(n) = 3*a(n-1) - a(n-2) with a(0)=1, a(1)=7.

Original entry on oeis.org

1, 7, 20, 53, 139, 364, 953, 2495, 6532, 17101, 44771, 117212, 306865, 803383, 2103284, 5506469, 14416123, 37741900, 98809577, 258686831, 677250916, 1773065917, 4641946835, 12152774588, 31816376929, 83296356199, 218072691668, 570921718805, 1494692464747
Offset: 0

Views

Author

Barry E. Williams, May 09 2000

Keywords

References

  • A. H. Beiler, Recreations in the Theory of Numbers, Dover, N.Y., 1964, pp. 122-125, 194-196.

Crossrefs

Programs

  • GAP
    List([0..30], n-> Fibonacci(2*n+2) +4*Fibonacci(2*n) ); # G. C. Greubel, Jan 17 2020
  • Magma
    [5*Fibonacci(2*n) + Fibonacci(2*n+1): n in [0..30]]; // Vincenzo Librandi, Dec 25 2018
    
  • Maple
    with(combinat); seq(fibonacci(2*n+2) +4*fibonacci(2*n), n=0..30); # G. C. Greubel, Jan 17 2020
  • Mathematica
    Table[5*Fibonacci[2n] + Fibonacci[2n+1],  {n, 0, 30}]
    Table[4*Fibonacci[2n-1] + 3*LucasL[2n-1], {n, 0, 30}] (* Rigoberto Florez, Dec 24 2018 *)
    LinearRecurrence[{3,-1}, {1,7}, 30] (* Vincenzo Librandi, Dec 25 2018 *)
    nxt[{a_,b_}]:={b,3b-a}; NestList[nxt,{1,7},30][[;;,1]] (* Harvey P. Dale, Mar 23 2025 *)
  • PARI
    Vec((1+4*x)/(1-3*x+x^2) + O(x^40)) \\ Michel Marcus, Sep 06 2017
    
  • Sage
    [fibonacci(2*n+2) +4*fibonacci(2*n) for n in (0..30)] # G. C. Greubel, Jan 17 2020
    

Formula

a(n) = (7*(((3 + sqrt(5))/2)^n - ((3 - sqrt(5))/2)^n) - (((3 + sqrt(5))/2)^(n - 1) - ((3 - sqrt(5))/2)^(n - 1)))/sqrt(5).
G.f.: (1 + 4*x)/(1 - 3*x + x^2).
From Rigoberto Florez, Dec 24 2018: (Start)
a(n) = 5*Fibonacci(2*n) + Fibonacci(2*n+1).
a(n) = 4*Fibonacci(2*n - 1) + 3*Lucas(2*n - 1). (End)
E.g.f.: exp(3*t/2)*( cosh(sqrt(5)*t/2) + (11/sqrt(5))*sinh(sqrt(5)*t/2) ). - G. C. Greubel, Jan 17 2020
a(n) = 4*A001906(n) + A001906(n+1). - R. J. Mathar, Mar 06 2022