cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A055544 Total number of nodes in all rooted trees with n nodes.

Original entry on oeis.org

1, 2, 6, 16, 45, 120, 336, 920, 2574, 7190, 20262, 57192, 162318, 461622, 1317165, 3766096, 10792399, 30980862, 89084844, 256524560, 739658472, 2135213982, 6170505665, 17849399616, 51679366125, 149750549260, 434260826883, 1260197855532, 3659410074932
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Maple
    with(numtheory):
    b:= proc(n) option remember; local d, j; `if`(n<2, n,
          (add(add(d*b(d), d=divisors(j)) *b(n-j), j=1..n-1))/ (n-1))
        end:
    a:= n-> n*b(n):
    seq(a(n), n=1..30);  # Alois P. Heinz, May 16 2013
  • Mathematica
    b[n_] := b[n] = If[n<2, n, (Sum[Sum[d*b[d], {d, Divisors[j]}]*b[n-j], {j, 1, n-1}])/(n-1)]; a[n_] := n*b[n]; Table[a[n], {n, 1, 30}] (* Jean-François Alcover, Jan 25 2017, after Alois P. Heinz *)

Formula

a(n) = n*A000081(n).
G.f.: x * (d/dx) x * Product_{k>=1} 1/(1 - x^k)^(a(k)/k). - Ilya Gutkovskiy, May 26 2019

A055542 Total number of nodes in all simple graphs of n nodes.

Original entry on oeis.org

1, 4, 12, 44, 170, 936, 7308, 98768, 2472012, 120051680, 11208976504, 1981094071104, 656526407783376, 406758179201296832, 471397289547064631520, 1024016251272440926318848, 4180909690610059855623236192, 32176399052621010609861807435264
Offset: 1

Views

Author

Keywords

Crossrefs

Equals A000088(n)*n.

Programs

  • Maple
    b:= proc(n, i, l) `if`(n=0 or i=1, 1/n!*2^((p-> add(ceil((p[j]-1)/2)
          +add(igcd(p[k], p[j]), k=1..j-1), j=1..nops(p)))([l[], 1$n])),
           add(b(n-i*j, i-1, [l[], i$j])/j!/i^j, j=0..n/i))
        end:
    a:= n-> n*b(n$2, []):
    seq(a(n), n=1..20);  # Alois P. Heinz, Aug 14 2019
  • Mathematica
    Needs["Combinatorica`"];
    Table[NumberOfGraphs[n]*n,{n,1,20}] (* Geoffrey Critzer, Oct 13 2012 *)

Extensions

More terms from Sascha Kurz, Mar 25 2002

A095349 Total number of edges in all trees on n nodes.

Original entry on oeis.org

0, 1, 2, 6, 12, 30, 66, 161, 376, 954, 2350, 6061, 15612, 41067, 108374, 289800, 778064, 2105739, 5723190, 15638235, 42890100, 118098876, 326217628, 903897631, 2511285360, 6994836250, 19527701960, 54632961864, 153147864380, 430095282258, 1209924870900
Offset: 1

Views

Author

Eric W. Weisstein, Jun 03 2004

Keywords

Crossrefs

Cf. A055543.

Programs

  • Mathematica
    nn = 25; f[x_] := Sum[a[n] x^n, {n, 0, nn}]; sol = SolveAlways[0 == Series[
    f[x] - x Product[1/(1 - x^i)^a[i], {i, 1, nn}], {x, 0, nn}], x];
    r[x_] := Sum[a[n] x^n, {n, 0, nn}] /. sol; Drop[Level[CoefficientList[
       Series[x^2 D[1/x (r[x] - 1/2 (r[x]^2 - r[x^2])), x], {x, 0, nn}],
    x], {2}], 1] (* Geoffrey Critzer, Jul 06 2020 *)

Formula

a(n) = (n-1)*A000055(n). - Vladeta Jovovic, Jun 05 2004
O.g.f.: x^2 d/dx(A(x)-1)/x where A(x) is the o.g.f. for A000055. - Geoffrey Critzer, Jul 06 2020

A345133 Decimal expansion of the limit, as n approaches infinity, of the probability that a node is a leaf in a free tree with n nodes.

Original entry on oeis.org

4, 3, 8, 1, 5, 6, 2, 3, 5, 6, 6, 4
Offset: 0

Views

Author

Washington Bomfim, Aug 17 2021

Keywords

Examples

			0.438156235664...
		

References

  • Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Section 5.6.3, p. 304.

Crossrefs

Formula

Equals lim_{n->oo} (A003228(n) / A055543(n)).
Showing 1-4 of 4 results.