cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A055543 Total number of nodes in all trees with n nodes.

Original entry on oeis.org

1, 2, 3, 8, 15, 36, 77, 184, 423, 1060, 2585, 6612, 16913, 44226, 116115, 309120, 826693, 2229606, 6041145, 16461300, 45034605, 123722632, 341045702, 943197528, 2615922250, 7274629700, 20278767420, 56656404896, 158617430965, 444926154060, 1250255699930
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    nn = 25; f[x_] := Sum[a[n] x^n, {n, 0, nn}]; sol = SolveAlways[0 == Series[
        f[x] - x Product[1/(1 - x^i)^a[i], {i, 1, nn}], {x, 0, nn}], x];
    r[x_] := Sum[a[n] x^n, {n, 0, nn}] /. sol; CoefficientList[Series[x D[r[x] - 1/2 (r[x]^2 - r[x^2]), x], {x, 0, nn}], x] (* Geoffrey Critzer, Jul 06 2020 *)

Formula

a(n) = n*A000055(n).
O.g.f.: x d/dx A(x) where A(x) is the o.g.f. for A000055. - Geoffrey Critzer, Jul 06 2020

Extensions

More terms, formula from Christian G. Bower, Jun 12 2000

A055542 Total number of nodes in all simple graphs of n nodes.

Original entry on oeis.org

1, 4, 12, 44, 170, 936, 7308, 98768, 2472012, 120051680, 11208976504, 1981094071104, 656526407783376, 406758179201296832, 471397289547064631520, 1024016251272440926318848, 4180909690610059855623236192, 32176399052621010609861807435264
Offset: 1

Views

Author

Keywords

Crossrefs

Equals A000088(n)*n.

Programs

  • Maple
    b:= proc(n, i, l) `if`(n=0 or i=1, 1/n!*2^((p-> add(ceil((p[j]-1)/2)
          +add(igcd(p[k], p[j]), k=1..j-1), j=1..nops(p)))([l[], 1$n])),
           add(b(n-i*j, i-1, [l[], i$j])/j!/i^j, j=0..n/i))
        end:
    a:= n-> n*b(n$2, []):
    seq(a(n), n=1..20);  # Alois P. Heinz, Aug 14 2019
  • Mathematica
    Needs["Combinatorica`"];
    Table[NumberOfGraphs[n]*n,{n,1,20}] (* Geoffrey Critzer, Oct 13 2012 *)

Extensions

More terms from Sascha Kurz, Mar 25 2002

A095350 Total number of edges in all rooted trees on n nodes.

Original entry on oeis.org

0, 1, 4, 12, 36, 100, 288, 805, 2288, 6471, 18420, 52426, 149832, 428649, 1229354, 3530715, 10157552, 29259703, 84396168, 243698332, 704436640, 2038158801, 5902222810, 17105674632, 49612191480, 143990912750, 418177092554
Offset: 1

Views

Author

Eric W. Weisstein, Jun 03 2004

Keywords

Crossrefs

Cf. A055544.

Formula

a(n) = (n-1)*A000081(n). - Vladeta Jovovic, Jun 05 2004

Extensions

More terms from Vladeta Jovovic, Jun 05 2004

A275331 Triangle read by rows, T(n,k) = k*Sum_{m=1..n/k} t(k)*t(n-k*m+1) with t = A000081, for n>=1 and 1<=k<=n.

Original entry on oeis.org

1, 2, 2, 4, 2, 6, 8, 6, 6, 16, 17, 10, 12, 16, 45, 37, 24, 30, 32, 45, 120, 85, 50, 60, 64, 90, 120, 336, 200, 120, 132, 160, 180, 240, 336, 920, 486, 280, 318, 336, 405, 480, 672, 920, 2574, 1205, 692, 750, 800, 945, 1080, 1344, 1840, 2574, 7190
Offset: 1

Views

Author

Peter Luschny, Aug 18 2016

Keywords

Examples

			Triangle starts:
[n] [k=1,2,...] row sum
[1] [1] 1
[2] [2, 2] 4
[3] [4, 2, 6] 12
[4] [8, 6, 6, 16] 36
[5] [17, 10, 12, 16, 45] 100
[6] [37, 24, 30, 32, 45, 120] 288
[7] [85, 50, 60, 64, 90, 120, 336] 805
[8] [200, 120, 132, 160, 180, 240, 336, 920] 2288
[9] [486, 280, 318, 336, 405, 480, 672, 920, 2574] 6471
		

Crossrefs

T(n,0) = A087803(n).
T(n,n) = A055544(n).
Sum_k T(n,k) = A095350(n+1).

Programs

  • Sage
    @cached_function
    def t():
        n = 1
        b = [0,1]
        while True:
            S = [k*sum(b[k]*b[n-k*m+1] for m in (1..n//k)) for k in (1..n)]
            b.append(sum(S)//n)
            yield S
            n += 1
    t_list = t()
    for n in (1..8): print(next(t_list))

A308433 G.f.: x * (d/dx) x * Product_{k>=1} (1 + x^k)^(a(k)/k).

Original entry on oeis.org

1, 2, 3, 8, 15, 36, 84, 200, 468, 1130, 2717, 6576, 15938, 38780, 94485, 230816, 564553, 1383318, 3393742, 8336960, 20502216, 50472928, 124369832, 306729456, 757078000, 1870040822, 4622317812, 11432698704, 28294211920, 70063292310, 173584768088, 430276174016, 1067049650238
Offset: 1

Views

Author

Ilya Gutkovskiy, May 26 2019

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := a[n] = SeriesCoefficient[x D[x Product[(1 + x^k)^(a[k]/k), {k, 1, n - 1}], x], {x, 0, n}]; Table[a[n], {n, 1, 33}]
    a[n_] := a[n] = n SeriesCoefficient[x Exp[Sum[Sum[(-1)^(k/d + 1) a[d], {d, Divisors[k]}] x^k/k, {k, 1, n - 1}]], {x, 0, n}]; Table[a[n], {n, 1, 33}]
    a[n_] := a[n] = Sum[a[n - k] Sum[(-1)^(k/d + 1) d a[d], {d, Divisors[k]}], {k, 1, n - 1}]/(n - 1); a[1] = 1; Table[n a[n], {n, 1, 33}]

Formula

L.g.f.: x * exp(Sum_{k>=1} ( Sum_{d|k} (-1)^(k/d+1)*a(d) ) * x^k/k).
a(n) = n * A004111(n).
Showing 1-5 of 5 results.