cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A055588 a(n) = 3*a(n-1) - a(n-2) - 1 with a(0) = 1 and a(1) = 2.

Original entry on oeis.org

1, 2, 4, 9, 22, 56, 145, 378, 988, 2585, 6766, 17712, 46369, 121394, 317812, 832041, 2178310, 5702888, 14930353, 39088170, 102334156, 267914297, 701408734, 1836311904, 4807526977, 12586269026, 32951280100, 86267571273
Offset: 0

Views

Author

Wolfdieter Lang, May 30 2000; Barry E. Williams, Jun 04 2000

Keywords

Comments

Number of directed column-convex polyominoes with area n+2 and having two cells in the bottom row. - Emeric Deutsch, Jun 14 2001
a(n) is the length of the list generated by the substitution: 3->3, 4->(3,4,6), 6->(3,4,6,6): {3, 4}, {3, 3, 4, 6}, {3, 3, 3, 4, 6, 3, 4, 6, 6}, {3, 3, 3, 3, 4, 6, 3, 4, 6, 6, 3, 3, 4, 6, 3, 4, 6, 6, 3, 4, 6, 6}, etc. - Wouter Meeussen, Nov 23 2003
Equals row sums of triangle A144955. - Gary W. Adamson, Sep 27 2008
Equals the INVERT transform of A034943 and the INVERTi transform of A094790. - Gary W. Adamson, Apr 01 2011

Crossrefs

Partial sums of A001519.
Apart from the first term, same as A052925.

Programs

  • GAP
    List([0..40], n-> Fibonacci(2*n)+1 ); # G. C. Greubel, Jun 06 2019
  • Magma
    [Fibonacci(2*n)+1: n in [0..40]]; // Vincenzo Librandi, Sep 30 2017
    
  • Maple
    g:=z/(1-3*z+z^2): gser:=series(g, z=0, 43): seq(abs(coeff(gser, z, n)+1), n=0..27); # Zerinvary Lajos, Mar 22 2009
  • Mathematica
    Table[Fibonacci[2n] +1, {n, 0, 40}] (* or *) LinearRecurrence[{4, -4, 1}, {1, 2, 4}, 40] (* Vincenzo Librandi, Sep 30 2017 *)
  • PARI
    vector(40, n, n--; fibonacci(2*n)+1) \\ G. C. Greubel, Jun 06 2019
    
  • Sage
    [lucas_number1(n,3,1)+1 for n in range(40)] # Zerinvary Lajos, Jul 06 2008
    

Formula

a(n) = (((3 + sqrt(5))/2)^n - ((3 - sqrt(5))/2)^n)/sqrt(5) + 1.
a(n) = Sum_{m=0..n} A055587(n, m) = 1 + A001906(n).
G.f.: (1 - 2*x)/((1 - 3*x + x^2)*(1-x)).
From Paul Barry, Oct 07 2004: (Start)
a(n) = 4*a(n-1) - 4*a(n-2) + a(n-3);
a(n) = Sum_{k=0..floor(n/3)} binomial(n-k, 2*k)2^(n-3*k). (End)
From Paul Barry, Oct 26 2004: (Start)
a(n) = A001906(n) + 1.
a(n) = Sum_{k=0..n} Fibonacci(2*k+2)*(2*0^(n-k) - 1).
a(n) = A008346(2*n). (End)
a(n) = Sum_{k=0..2*n+1} ((-1)^(k+1))*Fibonacci(k). - Michel Lagneau, Feb 03 2014
E.g.f.: cosh(x) + sinh(x) + 2*exp(3*x/2)*sinh(sqrt(5)*x/2)/sqrt(5). - Stefano Spezia, May 14 2024
Product_{n>=1} (1 - 1/a(n)) = sin(Pi/10) (A019827). - Amiram Eldar, Nov 28 2024