cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A055850 a(n) = 3*a(n-1) - a(n-2) with a(0)=1, a(1)=10.

Original entry on oeis.org

1, 10, 29, 77, 202, 529, 1385, 3626, 9493, 24853, 65066, 170345, 445969, 1167562, 3056717, 8002589, 20951050, 54850561, 143600633, 375951338, 984253381, 2576808805, 6746173034, 17661710297, 46238957857, 121055163274
Offset: 0

Views

Author

Barry E. Williams, Jun 03 2000

Keywords

References

  • A. H. Beiler, Recreations in the Theory of Numbers, Dover, N.Y., 1964, pp. 194-196.

Crossrefs

Programs

  • GAP
    List([0..30], n-> Fibonacci(2*n+2) + 7*Fibonacci(2*n) ); # G. C. Greubel, Jan 16 2020
  • Magma
    [Lucas(2*n+1) + 6*Fibonacci(2*n): n in [0..30]]; // Vincenzo Librandi, Apr 18 2011
    
  • Magma
    R:=PowerSeriesRing(Integers(), 30); Coefficients(R!( (1+7*x)/(1-3*x+x^2) )); // Marius A. Burtea, Jan 16 2020
    
  • Maple
    with(combinat); seq( fibonacci(2*n+2) + 7*fibonacci(2*n), n=0..30); # G. C. Greubel, Jan 16 2020
  • Mathematica
    LinearRecurrence[{3,-1},{1,10},30] (* Harvey P. Dale, Jul 22 2019 *)
  • PARI
    vector(31, n, fibonacci(2*n) + 7*fibonacci(2*(n-1)) ) \\ G. C. Greubel, Jan 16 2020
    
  • Sage
    [fibonacci(2*n+2) + 7*fibonacci(2*n) for n in (0..30)] # G. C. Greubel, Jan 16 2020
    

Formula

a(n) = (10*(((3+sqrt(5))/2)^n - ((3-sqrt(5))/2)^n) - (((3+sqrt(5))/2)^(n-1) - ((3-sqrt(5))/2)^(n-1)))/sqrt(5).
G.f.: (1+7*x)/(1-3*x+x^2).
a(n) = Lucas(2n+1) + 6*Fibonacci(2n).
a(n) = Fibonacci(2*n+2) + 7*Fibonacci(2*n). - G. C. Greubel, Jan 16 2020