A055991 a(n) is its own 4th difference.
1, 5, 19, 69, 250, 907, 3292, 11949, 43371, 157422, 571388, 2073943, 7527704, 27322992, 99173120, 359964521, 1306548149, 4742323107, 17213011605, 62477347458, 226771411939, 823102698260, 2987581397893, 10843899100203
Offset: 1
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..1000
- D. Birmajer, J. B. Gil, and M. D. Weiner, On the Enumeration of Restricted Words over a Finite Alphabet, J. Int. Seq. 19 (2016) # 16.1.3, example 16.
- Milan Janjić, Pascal Matrices and Restricted Words, J. Int. Seq., Vol. 21 (2018), Article 18.5.2.
- Index entries for linear recurrences with constant coefficients, signature (5,-6,4,-1).
Crossrefs
Programs
-
Magma
I:=[1, 5, 19, 69]; [n le 4 select I[n] else 5*Self(n-1)-6*Self(n-2)+4*Self(n-3)-Self(n-4): n in [1..30]]; // Vincenzo Librandi, Apr 05 2012
-
Mathematica
LinearRecurrence[{5,-6,4,-1},{1,5,19,69},30] (* Harvey P. Dale, Feb 27 2013 *)
Formula
a(n) = 5*a(n-1)-6*a(n-2)+4*a(n-3)-a(n-4) = a(n-1)+A055990(n) = A055988(n+1)-A055988(n) = A055989(n+1)-2*A055989(n)+A055989(n-1).
Letting a(0)=1, we have a(n)=sum(u=0, n-1, sum(v=0, u, sum(w=0, v, sum(x=0, w, a(x))))) for n>0. - Benoit Cloitre, Jan 26 2003
a(n) = sum_{k=1..n} binomial(n+3*k-1, n-k). - Vladeta Jovovic, Mar 23 2003
a(n) = sum{k=0..n, binomial(4n-3k-1,k)}. - Paul Barry, Feb 02 2006
G.f.: x/(1-5x+6x^2-4x^3+x^4). - Paul Barry, Feb 02 2006
Comments