cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A056105 First spoke of a hexagonal spiral.

Original entry on oeis.org

1, 2, 9, 22, 41, 66, 97, 134, 177, 226, 281, 342, 409, 482, 561, 646, 737, 834, 937, 1046, 1161, 1282, 1409, 1542, 1681, 1826, 1977, 2134, 2297, 2466, 2641, 2822, 3009, 3202, 3401, 3606, 3817, 4034, 4257, 4486, 4721, 4962, 5209, 5462, 5721, 5986, 6257
Offset: 0

Views

Author

Henry Bottomley, Jun 09 2000

Keywords

Comments

Also the number of (not necessarily maximal) cliques in the n X n grid graph. - Eric W. Weisstein, Nov 29 2017

Examples

			The spiral begins:
                   49--48--47--46--45
                   /                 \
                 50  28--27--26--25  44
                 /   /             \   \
               51  29  13--12--11  24  43
               /   /   /         \   \   \
             52  30  14   4---3  10  23  42  67
             /   /   /   /     \   \   \   \   \
           53  31  15   5   1===2===9==22==41==66==>
             \   \   \   \         /   /   /   /
             54  32  16   6---7---8  21  40  65
               \   \   \             /   /   /
               55  33   17--18--19--20  39  64
                 \   \                 /   /
                 56  34--35--36--37--38  63
                   \                     /
                   57--58--59--60--61--62
		

Crossrefs

Cf. A285792 (prime terms), A113519 (semiprime terms).
Other spirals: A054552.

Programs

Formula

a(n) = 3*n^2 - 2*n + 1.
a(n) = a(n-1) + 6*n - 5.
a(n) = 2*a(n-1) - a(n-2) + 6.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3).
a(n) = A056106(n) - n = A056107(n) - 2*n.
a(n) = A056108(n) - 3*n = A056109(n) - 4*n = A003215(n) - 5*n.
A008810(3*n-1) = A056109(-n) = a(n). - Michael Somos, Aug 03 2006
G.f.: (1-x+6*x^2)/(1-3*x+3*x^2-x^3). - Colin Barker, Jan 04 2012
From Robert G. Wilson v, Jul 05 2014: (Start)
Each of the 6 primary spokes or rays has a generating formula as stated here:
1st: 90 degrees A056105 3n^2 - 2n + 1
2nd: 30 degrees A056106 3n^2 - n + 1
3rd: 330 degrees A056107 3n^2 + 1
4th: 270 degrees A056108 3n^2 + n + 1
5th: 210 degrees A056109 3n^2 + 2n + 1
6th: 150 degrees A003215 3n^2 + 3n + 1
Each of the 6 secondary spokes or rays has a generating formula as stated here:
1st: 60 degrees 12n^2 - 27n + 16
2nd: 360 degrees 12n^2 - 25n + 14
3rd: 300 degrees 12n^2 - 23n + 12
4th: 240 degrees 12n^2 - 21n + 10
5th: 180 degrees 12n^2 - 19n + 8
6th: 120 degrees 12n^2 - 17n + 6 = A033577(n+1)
(End)
a(n) = 1 + A000567(n). - Omar E. Pol, Apr 26 2017
a(n) = A000290(n-1) + 2*A000290(n), n >= 1. - J. M. Bergot, Mar 03 2018
E.g.f.: (1 + x + 3*x^2)*exp(x). - G. C. Greubel, Dec 02 2018