A056109 Fifth spoke of a hexagonal spiral.
1, 6, 17, 34, 57, 86, 121, 162, 209, 262, 321, 386, 457, 534, 617, 706, 801, 902, 1009, 1122, 1241, 1366, 1497, 1634, 1777, 1926, 2081, 2242, 2409, 2582, 2761, 2946, 3137, 3334, 3537, 3746, 3961, 4182, 4409, 4642, 4881, 5126, 5377, 5634, 5897, 6166, 6441
Offset: 0
Examples
Illustration of initial terms: . . o . o o o o o . o o o o o o o o o o o o . o o o o o o o o o o o o o o o o o o o o o o . o o o o o o o o o o o o . o o o o o . o . . 1 6 17 34 - _Aaron David Fairbanks_, Feb 16 2025
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Henry Bottomley, Illustration of initial terms
- Tanya Khovanova, Recursive Sequences
- G. Nebe and N. J. A. Sloane, Home page for hexagonal (or triangular) lattice A2
- Leo Tavares, Triple Diamond Illustration
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
Crossrefs
Programs
-
GAP
List([0..50],n->3*n^2+2*n+1); # Muniru A Asiru, Oct 07 2018
-
Magma
[3*n^2 + 2*n + 1: n in [0..50]]; // Vincenzo Librandi, Mar 15 2013
-
Maple
seq(coeff(series(n!*(exp(x)*(3*x^2+5*x+1)),x,n+1), x, n), n = 0 .. 50); # Muniru A Asiru, Oct 07 2018
-
Mathematica
Table[3 n^2 + 2 n + 1, {n, 0, 100}] (* Vincenzo Librandi, Mar 15 2013 *) LinearRecurrence[{3,-3,1},{1,6,17},60] (* Harvey P. Dale, Mar 28 2019 *)
-
PARI
{a(n) = 3*n^2 + 2*n + 1}; /* Michael Somos, Aug 03 2006 */
-
PARI
Vec((1+3*x+2*x^2)/(1-3*x+3*x^2-x^3)+O(x^100)) \\ Stefano Spezia, Oct 17 2018
Formula
a(n) = 3n^2+2n+1 = a(n-1)+6n-1 = 2a(n-1)-a(n-2)+6 = 3a(n-1)-3a(n-2)+a(n-3) = A056105(n)+4n = A056106(n)+3n = A056107(n)+2n = A056108(n)+n = A003215(n)-n.
G.f.: (1+3*x+2*x^2)/(1-3*x+3*x^2-x^3). - Colin Barker, Jan 04 2012
G.f.: (1 + x) * (1 + 2*x) / (1 - x)^3. - Michael Somos, Feb 04 2012
E.g.f.: exp(x)*(1 + 5*x + 3*x^2). - Stefano Spezia, Oct 06 2018
Comments