A056242 Triangle read by rows: T(n,k) = number of k-part order-consecutive partition of {1,2,...,n} (1 <= k <= n).
1, 1, 2, 1, 5, 4, 1, 9, 16, 8, 1, 14, 41, 44, 16, 1, 20, 85, 146, 112, 32, 1, 27, 155, 377, 456, 272, 64, 1, 35, 259, 833, 1408, 1312, 640, 128, 1, 44, 406, 1652, 3649, 4712, 3568, 1472, 256, 1, 54, 606, 3024, 8361, 14002, 14608, 9312, 3328, 512, 1, 65, 870, 5202
Offset: 1
Examples
Triangle begins: 1; 1, 2; 1, 5, 4; 1, 9, 16, 8; 1, 14, 41, 44, 16; 1, 20, 85, 146, 112, 32; 1, 27, 155, 377, 456, 272, 64; 1, 35, 259, 833, 1408, 1312, 640, 128; 1, 44, 406, 1652, 3649, 4712, 3568, 1472, 256; T(3,2)=5 because we have {1}{23}, {23}{1}, {12}{3}, {3}{12} and {2}{13}. Triangle (1, 0, 1/2, 1/2, 0, 0, 0, ...) DELTA (0, 2, 0, 0, 0, ...) begins: 1; 1, 0; 1, 2, 0; 1, 5, 4, 0; 1, 9, 16, 8, 0; 1, 14, 41, 44, 16, 0; 1, 20, 85, 146, 112, 32, 0; 1, 27, 155, 377, 456, 272, 64, 0;
Links
- Reinhard Zumkeller, Rows n = 1..125 of table, flattened
- Jean-Luc Baril, José L. Ramírez, and Fabio A. Velandia, Bijections between Directed-Column Convex Polyominoes and Restricted Compositions, September 29, 2023.
- Tyler Clark and Tom Richmond, The Number of Convex Topologies on a Finite Totally Ordered Set, 2013, Involve, Vol. 8 (2015), No. 1, 25-32.
- F. K. Hwang and C. L. Mallows, Enumerating nested and consecutive partitions, J. Combin. Theory Ser. A 70 (1995), no. 2, 323-333.
- Finn Bjarne Jost, Tautological Intersection Numbers and Order-Consecutive Partition Sequences, arXiv:2307.15825 [math.CO], 2023. See p. 9.
- V. Strehl, Combinatoire rétrospective et créative, an on-line presentation, slide 36, SLC 71, Bertinoro,, September 18, 2013.
- Volker Strehl, Lacunary Laguerre Series from a Combinatorial Perspective, Séminaire Lotharingien de Combinatoire, B76c (2017).
Crossrefs
Programs
-
Haskell
a056242 n k = a056242_tabl !! (n-1)!! (k-1) a056242_row n = a056242_tabl !! (n-1) a056242_tabl = [1] : [1,2] : f [1] [1,2] where f us vs = ws : f vs ws where ws = zipWith (-) (map (* 2) $ zipWith (+) ([0] ++ vs) (vs ++ [0])) (zipWith (+) ([0] ++ us ++ [0]) (us ++ [0,0])) -- Reinhard Zumkeller, May 08 2014
-
Maple
T:=proc(n,k) if k=1 then 1 elif k<=n then sum((-1)^(k-1-j)*binomial(k-1,j)*binomial(n+2*j-1,2*j),j=0..k-1) else 0 fi end: seq(seq(T(n,k),k=1..n),n=1..12);
-
Mathematica
rows = 11; t[n_, k_] := (-1)^(k+1)*HypergeometricPFQ[{1-k, (n+1)/2, n/2}, {1/2, 1}, 1]; Flatten[ Table[ t[n, k], {n, 1, rows}, {k, 1, n}]](* Jean-François Alcover, Nov 17 2011 *)
Formula
The Hwang and Mallows reference gives explicit formulas.
T(n,k) = Sum_{j=0..k-1} (-1)^(k-1-j)*binomial(k-1, j)*binomial(n+2j-1, 2j) (1<=k<=n); this is formula (11) in the Huang and Mallows reference.
T(n,k) = 2*T(n-1,k) + 2*T(n-1,k-1) - T(n-2,k) - T(n-2,k-1), T(1,1) = 1, T(2,1) = 1, T(2,2) = 2. - Philippe Deléham, Feb 11 2012
G.f.: -(-1+x)*x*y/(1-2*x-2*x*y+x^2*y+x^2). - R. J. Mathar, Aug 11 2015
Comments