A056520 a(n) = (n + 2)*(2*n^2 - n + 3)/6.
1, 2, 6, 15, 31, 56, 92, 141, 205, 286, 386, 507, 651, 820, 1016, 1241, 1497, 1786, 2110, 2471, 2871, 3312, 3796, 4325, 4901, 5526, 6202, 6931, 7715, 8556, 9456, 10417, 11441, 12530, 13686, 14911, 16207, 17576, 19020, 20541, 22141, 23822
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Kassie Archer, Ethan Borsh, Jensen Bridges, Christina Graves, and Millie Jeske, Cyclic permutations avoiding patterns in both one-line and cycle forms, arXiv:2312.05145 [math.CO], 2023. See p. 2.
- Guo-Niu Han, Enumeration of Standard Puzzles, 2011. [Cached copy]
- Guo-Niu Han, Enumeration of Standard Puzzles, arXiv:2006.14070 [math.CO], 2020.
- Amit Kumar Singh, Akash Kumar and Thambipillai Srikanthan, Accelerating Throughput-aware Run-time Mapping for Heterogeneous MPSoCs, ACM Transactions on Design Automation of Electronic Systems, 2012. - From _N. J. A. Sloane_, Dec 25 2012
- Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1).
Programs
-
Magma
[(n+2)*(2*n^2-n+3)/6: n in [0..40]]; // Vincenzo Librandi, May 24 2011
-
Mathematica
a[n_] := (n+2)*(2*n^2-n+3)/6; Table[a[n], {n, 0, 100}] (* Vladimir Joseph Stephan Orlovsky, Dec 17 2008 *) s = 1; lst = {s}; Do[s += n^2; AppendTo[lst, s], {n, 1, 41, 1}]; lst (* Zerinvary Lajos, Jul 12 2009 *) Table[n!^2*Det[Array[KroneckerDelta[#1,#2](((#1^2+1)/(#1^2))-1)+1&,{n,n}]],{n,1,20}] (* John M. Campbell, May 20 2011 *) FoldList[#1 + #2^2 &, 1, Range@ 40] (* Robert G. Wilson v, Oct 28 2011 *)
-
PARI
a(n)=(n+2)*(2*n^2-n+3)/6 \\ Charles R Greathouse IV, Jul 02 2013
Formula
a(n) = a(n-1) + n^2.
a(n) = A000330(n) + 1.
G.f.: (1 - 2*x + 4*x^2 - x^3)/(1 - x)^4. - Paul Barry, Apr 14 2010
Let b(0) = b(1) = 1, b(n) = max(b(n-1) + (n - 1)^2, b(n-2) + (n - 2)^2) for n >= 2; then a(n) = b(n+1). - Yalcin Aktar, Jul 28 2011
Comments