cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 18 results. Next

A179904 a(n) = A056520(n)+1 for n>0, a(0)=1.

Original entry on oeis.org

1, 3, 7, 16, 32, 57, 93, 142, 206, 287, 387, 508, 652, 821, 1017, 1242, 1498, 1787, 2111, 2472, 2872, 3313, 3797, 4326, 4902, 5527, 6203, 6932, 7716, 8557, 9457, 10418, 11442, 12531, 13687, 14912, 16208, 17577, 19021, 20542, 22142, 23823, 25587
Offset: 0

Views

Author

Gary W. Adamson, Jul 31 2010

Keywords

Comments

Original name: (1,3,5,7,9,..) = A005408 convolved with (1,0,2,3,4,..) = 1 followed by A087156.

Examples

			a(3) = 16 = 1 + A056520(3) = (1 + 15).
a(4) = 32 = (9, 7, 5, 3, 1) dot (1, 0, 2, 3, 4) = (9 + 0 + 10 + 9 + 4).
		

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{4,-6,4,-1},{1,3,7,16,32},50] (* Harvey P. Dale, Apr 25 2020 *)

Formula

From Bruno Berselli, Aug 26 2011: (Start)
G.f.: (1 + x)*(1 - 2*x + 3*x^2 - x^3)/(1 - x)^4.
a(n) = (1/6)*(2*n^3 + 3*n^2 + n + 12) for n>0, a(0)=1. (End)
a(n) = A153056(n) for n > 0. - Georg Fischer, Oct 24 2018

Extensions

More terms and a(20) added by Bruno Berselli, Aug 26 2011

A153058 a(0)=4; a(n)=n^2+a(n-1) for n>0.

Original entry on oeis.org

4, 5, 9, 18, 34, 59, 95, 144, 208, 289, 389, 510, 654, 823, 1019, 1244, 1500, 1789, 2113, 2474, 2874, 3315, 3799, 4328, 4904, 5529, 6205, 6934, 7718, 8559, 9459, 10420, 11444, 12533, 13689, 14914, 16210, 17579, 19023, 20544, 22144, 23825, 25589
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    a=4;lst={};Do[a=n^2+a;AppendTo[lst,a],{n,0,5!}];lst
    RecurrenceTable[{a[0]==4,a[n]==n^2+a[n-1]},a,{n,50}] (* Harvey P. Dale, Apr 27 2012 *)

Formula

G.f.: (4-11x+13x^2-4x^3)/(1-x)^4. a(n)=4+A000330(n). - R. J. Mathar, Jan 17 2009

Extensions

Added indices to definition and corrected offset. - R. J. Mathar, Jan 17 2009

A030238 Backwards shallow diagonal sums of Catalan triangle A009766.

Original entry on oeis.org

1, 1, 3, 7, 20, 59, 184, 593, 1964, 6642, 22845, 79667, 281037, 1001092, 3595865, 13009673, 47366251, 173415176, 638044203, 2357941142, 8748646386, 32576869203, 121701491701, 456012458965, 1713339737086, 6453584646837, 24364925260024, 92185136438942
Offset: 0

Views

Author

Keywords

Comments

Number of linear forests of planted planar trees with n nodes (Christian G. Bower).
Number of ordered trees with n+2 edges and having no branches of length 1 starting from the root. Example: a(1)=1 because the only ordered tree with 3 edges having no branch of length 1 starting from the root is the path tree of length 3. a(n) = A127158(n+2,0). - Emeric Deutsch, Mar 01 2007
Hankel transform is A056520. - Paul Barry, Oct 16 2007

Crossrefs

Programs

  • Maple
    g:=(1-sqrt(1-4*z))/z/(2-z+z*sqrt(1-4*z)): gser:=series(g,z=0,30): seq(coeff(gser,z,n),n=0..25); # Emeric Deutsch, Mar 01 2007
  • Mathematica
    Sum[ triangle[ n-k, (n-k)-(k-1) ], {k, 1, Floor[ (n+1)/2 ]} ]
    CoefficientList[Series[(1-Sqrt[1-4*x])/x/(2-x+x*Sqrt[1-4*x]), {x, 0, 20}], x] (* Vaclav Kotesovec, Feb 13 2014 *)

Formula

INVERT transform of 1, 2, 2, 5, 14, 42, 132, ... (cf. A000108).
a(n) = Sum_{k=0..floor(n/2)} (k+1)*binomial(2*n-3*k+1, n-k+1)/(2*n-3*k+1). Diagonal sums of A033184. - Paul Barry, Jun 22 2004
a(n) = Sum_{k=0..floor(n/2)} (k+1)*binomial(2*n-3*k, n-k)/(n-k+1). - Paul Barry, Feb 02 2005
G.f.: (1-sqrt(1-4*z))/(z*(2-z+z*sqrt(1-4*z))). - Emeric Deutsch, Mar 01 2007
G.f.: c(z)/(1-z^2*c(z)) where c(z) = (1-sqrt(1-4*z))/(2*z). - Ira M. Gessel, Sep 21 2020
D-finite with recurrence: (n+1)*a(n) + (-5*n+1)*a(n-1) + 2*(2*n-1)*a(n-2) + (n+1)*a(n-3) + 2*(-2*n+1)*a(n-4) = 0. - R. J. Mathar, Nov 30 2012
a(n) = Sum_{k=0..n} A000108(k)*A132364(n-k). - Philippe Deléham, Feb 27 2013
a(n) ~ 2^(2*n+6) / (49 * sqrt(Pi) * n^(3/2)). - Vaclav Kotesovec, Feb 13 2014

Extensions

More terms from Christian G. Bower, Apr 15 1998

A088961 Zigzag matrices listed entry by entry.

Original entry on oeis.org

3, 5, 5, 5, 10, 14, 14, 7, 14, 21, 21, 7, 21, 35, 42, 48, 27, 9, 48, 69, 57, 36, 27, 57, 78, 84, 9, 36, 84, 126, 132, 165, 110, 44, 11, 165, 242, 209, 121, 55, 110, 209, 253, 220, 165, 44, 121, 220, 297, 330, 11, 55, 165, 330, 462
Offset: 1

Views

Author

Paul Boddington, Oct 28 2003

Keywords

Comments

For each n >= 1 the n X n matrix Z(n) is constructed as follows. The i-th row of Z(n) is obtained by generating a hexagonal array of numbers with 2*n+1 rows, 2*n numbers in the odd numbered rows and 2*n+1 numbers in the even numbered rows. The first row is all 0's except for two 1's in the i-th and the (2*n+1-i)th positions. The remaining rows are generated using the same rule for generating Pascal's triangle. The i-th row of Z(n) then consists of the first n numbers in the bottom row of our array.
For example the top row of Z(2) is [5,5], found from the array:
. 1 0 0 1
1 1 0 1 1
. 2 1 1 2
2 3 2 3 2
. 5 5 5 5
Zigzag matrices have remarkable properties. Here is a selection:
1) Z(n) is symmetric.
2) det(Z(n)) = A085527(n).
3) tr(Z(n)) = A033876(n-1).
4) If 2*n+1 is a power of a prime p then all entries of Z(n) are multiples of p.
5) If 4*n+1 is a power of a prime p then the dot product of any two distinct rows of Z(n) is a multiple of p.
6) It is always possible to move from the bottom left entry of Z(n) to the top right entry using only rightward and upward moves and visiting only odd numbers.
A001700(n) = last term of last row of Z(n): a(A000330(n-1)) = A001700(n); A230585(n) = first term of first row of Z(n): a(A056520(n-1)) = A230585(n); A051417(n) = greatest common divisor of entries of Z(n). - Reinhard Zumkeller, Oct 25 2013

Examples

			The first five values are 3, 5, 5, 5, 10 because the first two zigzag matrices are [[3]] and [[5,5],[5,10]].
		

Crossrefs

Programs

  • Haskell
    a088961 n = a088961_list !! (n-1)
    a088961_list = concat $ concat $ map f [1..] where
       f x = take x $ g (take x (1 : [0,0..])) where
         g us = (take x $ g' us) : g (0 : init us)
         g' vs = last $ take (2 * x + 1) $
                        map snd $ iterate h (0, vs ++ reverse vs)
       h (p,ws) = (1 - p, drop p $ zipWith (+) ([0] ++ ws) (ws ++ [0]))
    -- Reinhard Zumkeller, Oct 25 2013
  • Mathematica
    Flatten[Table[Binomial[2n,n+j-i]-Binomial[2n,n+i+j]+ Binomial[2n, 3n+1-i-j], {n,5},{i,n},{j,n}]] (* Harvey P. Dale, Dec 15 2011 *)

Formula

The ij entry of Z(n) is binomial(2*n, n+j-i) - binomial(2*n, n+i+j) + binomial(2*n, 3*n+1-i-j).

A153056 a(0)=2, a(n) = n^2+a(n-1).

Original entry on oeis.org

2, 3, 7, 16, 32, 57, 93, 142, 206, 287, 387, 508, 652, 821, 1017, 1242, 1498, 1787, 2111, 2472, 2872, 3313, 3797, 4326, 4902, 5527, 6203, 6932, 7716, 8557, 9457, 10418, 11442, 12531, 13687, 14912, 16208, 17577, 19021, 20542, 22142, 23823, 25587
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    a=2;lst={};Do[a=n^2+a;AppendTo[lst,a],{n,0,5!}];lst
    nxt[{n_,a_}]:={n+1,(n+1)^2+a}; NestList[nxt,{0,2},50][[;;,2]] (* or *) LinearRecurrence[{4,-6,4,-1},{2,3,7,16},50] (* Harvey P. Dale, Sep 05 2023 *)
  • PARI
    a(n) = n*(n+1)*(2*n+1)/6 + 2; \\ Altug Alkan, Apr 30 2018

Formula

G.f.: (2-5x+7x^2-2x^3)/(1-x)^4. a(n)=2+n(1+2n^2+3n)/6 = 2+A000330(n). - R. J. Mathar, Jan 08 2009

A153057 a(0)=3; a(n) = n^2 + a(n-1) for n>0.

Original entry on oeis.org

3, 4, 8, 17, 33, 58, 94, 143, 207, 288, 388, 509, 653, 822, 1018, 1243, 1499, 1788, 2112, 2473, 2873, 3314, 3798, 4327, 4903, 5528, 6204, 6933, 7717, 8558, 9458, 10419, 11443, 12532, 13688, 14913, 16209, 17578, 19022, 20543, 22143, 23824, 25588
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    I:=[3,4,8,17]; [n le 4 select I[n] else 4*Self(n-1)-6*Self(n-2)+4*Self(n-3)-Self(n-4): n in [1..60]]; // Vincenzo Librandi, May 09 2017
  • Mathematica
    a=3;lst={};Do[a=n^2+a;AppendTo[lst,a],{n,0,5!}];lst
    CoefficientList[Series[(3 - 8 x + 10 x^2 - 3 x^3) / (1 - x)^4, {x, 0, 50}], x] (* Vincenzo Librandi, May 09 2017 *)

Formula

From R. J. Mathar, Jan 17 2009: (Start)
G.f.: (3-8*x + 10*x^2 - 3*x^3)/(1 - x)^4.
a(n) = 3+A000330(n). (End)
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4). - Vincenzo Librandi, May 09 2017

Extensions

Added indices to definition. Corrected offset R. J. Mathar, Jan 17 2009

A067868 a(n) = a(n-1) + a(floor(n/2))^2 for n > 0, a(0) = 1.

Original entry on oeis.org

1, 2, 6, 10, 46, 82, 182, 282, 2398, 4514, 11238, 17962, 51086, 84210, 163734, 243258, 5993662, 11744066, 32120262, 52496458, 178789102, 305081746, 627715190, 950348634, 3560128030, 6169907426, 13261231526, 20352555626, 47161378382, 73970201138, 133144655702, 192319110266
Offset: 0

Views

Author

Reinhard Zumkeller, Feb 16 2002

Keywords

Crossrefs

Programs

  • Magma
    [1] cat [n le 2 select Factorial(n+1) else Self(n-1) + (Self(Floor(n/2)))^2: n in [1..51]]; // G. C. Greubel, Feb 10 2021
  • Mathematica
    a[n_]:= a[n] = If[n==0, 1, a[n-1] + (a[Floor[n/2]])^2];
    Table[a[n], {n, 0, 50}] (* G. C. Greubel, Feb 10 2021 *)
  • PARI
    a(n) = if (n==0, 1, a(n-1)+a(n\2)^2);
    
  • Sage
    def a(n): return 1 if n == 0 else a(n-1) + (a(n//2))^2
    [a(n) for n in range(50)] # G. C. Greubel, Feb 10 2021
    

Extensions

Corrected name and more terms from Michel Marcus, Feb 05 2021

A191748 Sequence of all m in {1,2,3,...} such that A191747(m) = 1.

Original entry on oeis.org

1, 2, 5, 6, 10, 14, 15, 20, 25, 30, 31, 37, 43, 49, 55, 56, 63, 70, 77, 84, 91, 92, 100, 108, 116, 124, 132, 140, 141, 150, 159, 168, 177, 186, 195, 204, 205, 215, 225, 235, 245, 255, 265, 275, 285, 286, 297, 308, 319, 330, 341, 352, 363, 374, 385, 386, 398
Offset: 0

Views

Author

L. Edson Jeffery, Jun 29 2011

Keywords

Comments

Note that A191747={1,1,0,0,1,1,0,0,0,1,0,0,0,1,...} is the sequence formed by concatenation of the row entries of successive N X N identity matrices, N=1,2,....
This sequence is read from the antidiagonals of the table
T(n,k)=
1, 5, 14, 30, 55, ..
2, 10, 25, 49, 84, ..
6, 20, 43, 77, 124, ..
15, 37, 70, 116, 177, ..
31, 63, 100, 168, 245, ..
...
in which the n-th row is found from the n-th generating function (-n+(2*n+1)*x-(n-1)*x^2)/(1-x)^4, n in {0,1,2,...}, by taking the (n+1)-th term on, and, similarly, the k-th column is found from the k-th generating function (2*k+1-(5*k+2)*x+4*(k+1)*x^2-(k+1)*x^3)/(1-x)^4, k in {0,1,2,...}, by taking the k-th term on. For the first three rows, n=0 gives the core sequence A000330, n=1 gives essentially A058373, ignoring the two initial zeros, and n=2 gives -A058372. The first column, for k=0, is A056520, where it is known that A056520(m)=A000330(m)+1. Thus a trivial relation, A191748(m,j)=A056520(m)+j*(m+2)=A000330(m)+j*(m+2)+1, j in {0,...,m}, m>0, with A191748(0,0)=1, gives the triangle
1
2, 5,
6, 10, 14,
...
However, the j-th row R_j of the table is given by R_j(n)=(n+1)*(2*n^2+n-6*j)/6, n=j+1,j+2,j+3,..., and the k-th column C_k by C_k(n)=(n+2)*(2*n^2-n+6*k+3)/6, n=k,k+1,k+2,..., with j,k in {0,1,...}. Substituting n+k for n in the second formula (to account for varying offsets) gives the formula for T(n,k) below.

Crossrefs

Formula

For the table: T(n,k) = (n+k+2)*(2*(n+k)^2-n+5*k+3)/6, n,k=0,1,2,....

A210862 Triangle of coefficients of polynomials u(n,x) jointly generated with A210863; see the Formula section.

Original entry on oeis.org

1, 2, 1, 3, 2, 2, 4, 6, 7, 3, 5, 15, 20, 16, 5, 6, 31, 57, 63, 37, 8, 7, 56, 153, 215, 184, 81, 13, 8, 92, 370, 684, 771, 513, 171, 21, 9, 141, 805, 2028, 2898, 2603, 1354, 351, 34, 10, 205, 1598, 5515, 10084, 11582, 8319, 3415, 703, 55, 11, 286, 2940
Offset: 1

Views

Author

Clark Kimberling, Mar 28 2012

Keywords

Comments

Row n starts with n and ends with F(n), where F=A000045 (Fibonacci numbers).
Column 2: A056520
For a discussion and guide to related arrays, see A208510.

Examples

			First five rows:
1
2...1
3...2....2
4...6....7....3
5...15...20...16...5
First three polynomials u(n,x): 1, 2 + x, 4 + 5x + 2x^2.
		

Crossrefs

Programs

  • Mathematica
    u[1, x_] := 1; v[1, x_] := 1; z = 14;
    u[n_, x_] := u[n - 1, x] + x*v[n - 1, x] + 1;
    v[n_, x_] := (x + n - 1)*u[n - 1, x] + x*v[n - 1, x];
    Table[Expand[u[n, x]], {n, 1, z/2}]
    Table[Expand[v[n, x]], {n, 1, z/2}]
    cu = Table[CoefficientList[u[n, x], x], {n, 1, z}];
    TableForm[cu]
    Flatten[%]   (* A210862 *)
    cv = Table[CoefficientList[v[n, x], x], {n, 1, z}];
    TableForm[cv]
    Flatten[%]   (* A210863 *)

Formula

u(n,x)=u(n-1,x)+x*v(n-1,x)+1,
v(n,x)=(x+n-1)*u(n-1,x)+x*v(n-1,x),
where u(1,x)=1, v(1,x)=1.

A230585 First terms of first rows of zigzag matrices as defined in A088961.

Original entry on oeis.org

3, 5, 14, 42, 132, 429, 1430, 4862, 16796, 58786, 208012, 742900, 2674440, 9694845, 35357670, 129644790, 477638700, 1767263190, 6564120420, 24466267020, 91482563640, 343059613650, 1289904147324, 4861946401452, 18367353072152, 69533550916004, 263747951750360
Offset: 1

Views

Author

Reinhard Zumkeller, Oct 25 2013

Keywords

Comments

a(n) = A088961(A056520(n-1));
a(n) = A000108(n+1) for n > 1.

Crossrefs

Cf. A007318.

Programs

  • Haskell
    a230585 1 = 3
    a230585 n = a007318 (2*n) n - a007318 (2*n) (n+2)

Formula

a(n) = binomial(2*n,n) - binomial(2*n,n+2) + 0^(n-1).
Showing 1-10 of 18 results. Next