cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A228196 A triangle formed like Pascal's triangle, but with n^2 on the left border and 2^n on the right border instead of 1.

Original entry on oeis.org

0, 1, 2, 4, 3, 4, 9, 7, 7, 8, 16, 16, 14, 15, 16, 25, 32, 30, 29, 31, 32, 36, 57, 62, 59, 60, 63, 64, 49, 93, 119, 121, 119, 123, 127, 128, 64, 142, 212, 240, 240, 242, 250, 255, 256, 81, 206, 354, 452, 480, 482, 492, 505, 511, 512, 100, 287, 560, 806, 932, 962, 974, 997, 1016, 1023, 1024
Offset: 1

Views

Author

Boris Putievskiy, Aug 15 2013

Keywords

Comments

The third row is (n^4 - n^2 + 24*n + 24)/12.
For a closed-form formula for generalized Pascal's triangle see A228576. - Boris Putievskiy, Sep 04 2013

Examples

			The start of the sequence as a triangular array read by rows:
   0;
   1,  2;
   4,  3,  4;
   9,  7,  7,  8;
  16, 16, 14, 15, 16;
  25, 32, 30, 29, 31, 32;
  36, 57, 62, 59, 60, 63, 64;
		

Crossrefs

Cf. We denote Pascal-like triangle with L(n) on the left border and R(n) on the right border by (L(n),R(n)). A007318 (1,1), A008949 (1,2^n), A029600 (2,3), A029618 (3,2), A029635 (1,2), A029653 (2,1), A037027 (Fibonacci(n),1), A051601 (n,n) n>=0, A051597 (n,n) n>0, A051666 (n^2,n^2), A071919 (1,0), A074829 (Fibonacci(n), Fibonacci(n)), A074909 (1,n), A093560 (3,1), A093561 (4,1), A093562 (5,1), A093563 (6,1), A093564 (7,1), A093565 (8,1), A093644 (9,1), A093645 (10,1), A095660 (1,3), A095666 (1,4), A096940 (1,5), A096956 (1,6), A106516 (3^n,1), A108561(1,(-1)^n), A132200 (4,4), A134636 (2n+1,2n+1), A137688 (2^n,2^n), A160760 (3^(n-1),1), A164844(1,10^n), A164847 (100^n,1), A164855 (101*100^n,1), A164866 (101^n,1), A172171 (1,9), A172185 (9,11), A172283 (-9,11), A177954 (int(n/2),1), A193820 (1,2^n), A214292 (n,-n), A227074 (4^n,4^n), A227075 (3^n,3^n), A227076 (5^n,5^n), A227550 (n!,n!), A228053 ((-1)^n,(-1)^n), A228074 (Fibonacci(n), n).
Cf. A000290 (row 1), A153056 (row 2), A000079 (column 1), A000225 (column 2), A132753 (column 3), A118885 (row sums of triangle array + 1), A228576 (generalized Pascal's triangle).

Programs

  • GAP
    T:= function(n,k)
        if k=0 then return n^2;
        elif k=n then return 2^n;
        else return T(n-1,k-1) + T(n-1,k);
        fi;
      end;
    Flat(List([0..12], n-> List([0..n], k-> T(n,k) ))); # G. C. Greubel, Nov 12 2019
  • Maple
    T:= proc(n, k) option remember;
          if k=0 then n^2
        elif k=n then 2^k
        else T(n-1, k-1) + T(n-1, k)
          fi
        end:
    seq(seq(T(n, k), k=0..n), n=0..10); # G. C. Greubel, Nov 12 2019
  • Mathematica
    T[n_, k_]:= T[n, k] = If[k==0, n^2, If[k==n, 2^k, T[n-1, k-1] + T[n-1, k]]]; Table[T[n, k], {n,0,10}, {k,0,n}]//Flatten (* G. C. Greubel, Nov 12 2019 *)
    Flatten[Table[Sum[i^2 Binomial[n-1-i, n-k-i], {i,1,n-k}] + Sum[2^i Binomial[n-1-i, k-i], {i,1,k}], {n,0,10}, {k,0,n}]] (* Greg Dresden, Aug 06 2022 *)
  • PARI
    T(n,k) = if(k==0, n^2, if(k==n, 2^k, T(n-1, k-1) + T(n-1, k) )); \\ G. C. Greubel, Nov 12 2019
    
  • Python
    def funcL(n):
       q = n**2
       return q
    def funcR(n):
       q = 2**n
       return q
    for n in range (1,9871):
       t=int((math.sqrt(8*n-7) - 1)/ 2)
       i=n-t*(t+1)/2-1
       j=(t*t+3*t+4)/2-n-1
       sum1=0
       sum2=0
       for m1 in range (1,i+1):
          sum1=sum1+funcR(m1)*binomial(i+j-m1-1,i-m1)
       for m2 in range (1,j+1):
          sum2=sum2+funcL(m2)*binomial(i+j-m2-1,j-m2)
       sum=sum1+sum2
    
  • Sage
    @CachedFunction
    def T(n, k):
        if (k==0): return n^2
        elif (k==n): return 2^n
        else: return T(n-1, k-1) + T(n-1, k)
    [[T(n, k) for k in (0..n)] for n in (0..12)] # G. C. Greubel, Nov 12 2019
    

Formula

T(n,0) = n^2, n>0; T(0,k) = 2^k; T(n, k) = T(n-1, k-1) + T(n-1, k) for n,k > 0. [corrected by G. C. Greubel, Nov 12 2019]
Closed-form formula for general case. Let L(m) and R(m) be the left border and the right border of Pascal like triangle, respectively. We denote binomial(n,k) by C(n,k).
As table read by antidiagonals T(n,k) = Sum_{m1=1..n} R(m1)*C(n+k-m1-1, n-m1) + Sum_{m2=1..k} L(m2)*C(n+k-m2-1, k-m2); n,k >=0.
As linear sequence a(n) = Sum_{m1=1..i} R(m1)*C(i+j-m1-1, i-m1) + Sum_{m2=1..j} L(m2)*C(i+j-m2-1, j-m2), where i=n-t*(t+1)/2-1, j=(t*t+3*t+4)/2-n-1, t=floor((-1+sqrt(8*n-7))/2); n>0.
Some special cases. If L(m)={b,b,b...} b*A000012, then the second sum takes form b*C(n+k-1,j). If L(m) is {0,b,2b,...} b*A001477, then the second sum takes form b*C(n+k,n-1). Similarly for R(m) and the first sum.
For this sequence L(m)=m^2 and R(m)=2^m.
As table read by antidiagonals T(n,k) = Sum_{m1=1..n} (2^m1)*C(n+k-m1-1, n-m1) + Sum_{m2=1..k} (m2^2)*C(n+k-m2-1, k-m2); n,k >=0.
As linear sequence a(n) = Sum_{m1=1..i} (2^m1)*C(i+j-m1-1, i-m1) + Sum_{m2=1..j} (m2^2)*C(i+j-m2-1, j-m2), where i=n-t*(t+1)/2-1, j=(t*t+3*t+4)/2-n-1, t=floor((-1+sqrt(8*n-7))/2).
As a triangular array read by rows, T(n,k) = Sum_{i=1..n-k} i^2*C(n-1-i, n-k-i) + Sum_{i=1..k} 2^i*C(n-1-i, k-i); n,k >=0. - Greg Dresden, Aug 06 2022

Extensions

Cross-references corrected and extended by Philippe Deléham, Dec 27 2013

A056520 a(n) = (n + 2)*(2*n^2 - n + 3)/6.

Original entry on oeis.org

1, 2, 6, 15, 31, 56, 92, 141, 205, 286, 386, 507, 651, 820, 1016, 1241, 1497, 1786, 2110, 2471, 2871, 3312, 3796, 4325, 4901, 5526, 6202, 6931, 7715, 8556, 9456, 10417, 11441, 12530, 13686, 14911, 16207, 17576, 19020, 20541, 22141, 23822
Offset: 0

Views

Author

N. J. A. Sloane, Laura Kasavan (maui12129(AT)cswebmail.com), Aug 26 2000

Keywords

Comments

Hankel transform of A030238. - Paul Barry, Oct 16 2007
Equals (1, 2, 3, 4, 5, ...) convolved with (1, 0, 3, 5, 7, 9, ...). - Gary W. Adamson, Jul 31 2010
a(n) equals n!^2 times the determinant of the n X n matrix whose (i,j)-entry is 1 + KroneckerDelta[i, j] (-1 + (1 + i^2)/i^2). - John M. Campbell, May 20 2011
Positions of ones in A253903 (with offset 1). - Harvey P. Dale, Mar 05 2015

Crossrefs

Programs

Formula

a(n) = a(n-1) + n^2.
a(n) = A000330(n) + 1.
G.f.: (1 - 2*x + 4*x^2 - x^3)/(1 - x)^4. - Paul Barry, Apr 14 2010
Let b(0) = b(1) = 1, b(n) = max(b(n-1) + (n - 1)^2, b(n-2) + (n - 2)^2) for n >= 2; then a(n) = b(n+1). - Yalcin Aktar, Jul 28 2011

A153058 a(0)=4; a(n)=n^2+a(n-1) for n>0.

Original entry on oeis.org

4, 5, 9, 18, 34, 59, 95, 144, 208, 289, 389, 510, 654, 823, 1019, 1244, 1500, 1789, 2113, 2474, 2874, 3315, 3799, 4328, 4904, 5529, 6205, 6934, 7718, 8559, 9459, 10420, 11444, 12533, 13689, 14914, 16210, 17579, 19023, 20544, 22144, 23825, 25589
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    a=4;lst={};Do[a=n^2+a;AppendTo[lst,a],{n,0,5!}];lst
    RecurrenceTable[{a[0]==4,a[n]==n^2+a[n-1]},a,{n,50}] (* Harvey P. Dale, Apr 27 2012 *)

Formula

G.f.: (4-11x+13x^2-4x^3)/(1-x)^4. a(n)=4+A000330(n). - R. J. Mathar, Jan 17 2009

Extensions

Added indices to definition and corrected offset. - R. J. Mathar, Jan 17 2009

A153057 a(0)=3; a(n) = n^2 + a(n-1) for n>0.

Original entry on oeis.org

3, 4, 8, 17, 33, 58, 94, 143, 207, 288, 388, 509, 653, 822, 1018, 1243, 1499, 1788, 2112, 2473, 2873, 3314, 3798, 4327, 4903, 5528, 6204, 6933, 7717, 8558, 9458, 10419, 11443, 12532, 13688, 14913, 16209, 17578, 19022, 20543, 22143, 23824, 25588
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    I:=[3,4,8,17]; [n le 4 select I[n] else 4*Self(n-1)-6*Self(n-2)+4*Self(n-3)-Self(n-4): n in [1..60]]; // Vincenzo Librandi, May 09 2017
  • Mathematica
    a=3;lst={};Do[a=n^2+a;AppendTo[lst,a],{n,0,5!}];lst
    CoefficientList[Series[(3 - 8 x + 10 x^2 - 3 x^3) / (1 - x)^4, {x, 0, 50}], x] (* Vincenzo Librandi, May 09 2017 *)

Formula

From R. J. Mathar, Jan 17 2009: (Start)
G.f.: (3-8*x + 10*x^2 - 3*x^3)/(1 - x)^4.
a(n) = 3+A000330(n). (End)
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4). - Vincenzo Librandi, May 09 2017

Extensions

Added indices to definition. Corrected offset R. J. Mathar, Jan 17 2009

A179904 a(n) = A056520(n)+1 for n>0, a(0)=1.

Original entry on oeis.org

1, 3, 7, 16, 32, 57, 93, 142, 206, 287, 387, 508, 652, 821, 1017, 1242, 1498, 1787, 2111, 2472, 2872, 3313, 3797, 4326, 4902, 5527, 6203, 6932, 7716, 8557, 9457, 10418, 11442, 12531, 13687, 14912, 16208, 17577, 19021, 20542, 22142, 23823, 25587
Offset: 0

Views

Author

Gary W. Adamson, Jul 31 2010

Keywords

Comments

Original name: (1,3,5,7,9,..) = A005408 convolved with (1,0,2,3,4,..) = 1 followed by A087156.

Examples

			a(3) = 16 = 1 + A056520(3) = (1 + 15).
a(4) = 32 = (9, 7, 5, 3, 1) dot (1, 0, 2, 3, 4) = (9 + 0 + 10 + 9 + 4).
		

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{4,-6,4,-1},{1,3,7,16,32},50] (* Harvey P. Dale, Apr 25 2020 *)

Formula

From Bruno Berselli, Aug 26 2011: (Start)
G.f.: (1 + x)*(1 - 2*x + 3*x^2 - x^3)/(1 - x)^4.
a(n) = (1/6)*(2*n^3 + 3*n^2 + n + 12) for n>0, a(0)=1. (End)
a(n) = A153056(n) for n > 0. - Georg Fischer, Oct 24 2018

Extensions

More terms and a(20) added by Bruno Berselli, Aug 26 2011
Showing 1-5 of 5 results.