cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A104517 Number of distinct prime divisors of 55...1 (with n 5s).

Original entry on oeis.org

2, 2, 3, 2, 2, 2, 3, 2, 5, 4, 1, 1, 3, 2, 5, 3, 4, 2, 4, 5, 4, 5, 3, 2, 3, 3, 3, 5, 3, 4, 6, 4, 4, 2, 4, 4, 3, 3, 5, 2, 2, 3, 2, 3, 7, 4, 3, 2, 5, 4, 4, 4, 6, 4, 8, 5, 3, 4, 7, 3, 2, 3, 4, 4, 5, 5, 5, 5, 6, 3, 5, 4, 2, 4, 4, 6, 4, 3, 2, 2, 6, 3, 5, 7, 5, 3, 6, 3, 4, 6, 7, 7
Offset: 1

Views

Author

Parthasarathy Nambi, Apr 19 2005

Keywords

Comments

Number of distinct prime factors of (10^(n + 1) - 1)*5/9 - 4. - Stefan Steinerberger, Mar 06 2006

Examples

			The number of distinct prime divisors of 51 is 2 which is the first term in the sequence.
The number of distinct prime divisors of 551 is 2 which is the second term in the sequence.
The number of distinct prime divisors of 5551 is 3 which is the third term in the sequence.
		

Crossrefs

Cf. A001221, A056684 (a(n)=1), A104484, A173804.

Programs

  • Magma
    [#PrimeDivisors((10^(n+1)-1)*5 div 9-4): n in [1..80]]; // Vincenzo Librandi, Mar 09 2018
    
  • Maple
    f:= n -> nops(numtheory:-factorset( (10^(n + 1) - 1)*5/9 - 4)):
    map(f, [$1..92]); # Robert Israel, Mar 08 2018
  • Mathematica
    Table[Length[FactorInteger[(10^(n + 1) - 1)*5/9 - 4]], {n, 1, 50}] (* Stefan Steinerberger, Mar 06 2006 *)
  • PARI
    a(n) = omega((10^(n + 1) - 1)*5/9 - 4); \\ Michel Marcus, Mar 09 2018

Formula

a(n) = A001221(A173804(n+1)). - Amiram Eldar, Jan 24 2020

Extensions

More terms from Stefan Steinerberger, Mar 06 2006
a(51)-a(92), and offset corrected, by Robert Israel, Mar 08 2018

A173804 a(n) = (5*10^n - 41)/9 for n > 0.

Original entry on oeis.org

1, 51, 551, 5551, 55551, 555551, 5555551, 55555551, 555555551, 5555555551, 55555555551, 555555555551, 5555555555551, 55555555555551, 555555555555551, 5555555555555551, 55555555555555551, 555555555555555551, 5555555555555555551, 55555555555555555551, 555555555555555555551
Offset: 1

Views

Author

Vincenzo Librandi, Feb 25 2010

Keywords

Comments

Primes up to n=100 are 555555555551 and 5555555555551; the next prime term has 609 digits (see A056684).

Crossrefs

Cf. A056684 (numbers n such that (5*10^(n+1)-41)/9 is prime). - Klaus Brockhaus, Feb 28 2010

Programs

  • Magma
    [(5*10^n-41)/9: n in [1..20]]; // Vincenzo Librandi, Jul 05 2012
  • Mathematica
    CoefficientList[Series[(1+40*x)/((1-x)*(1-10*x)),{x,0,30}],x] (* Vincenzo Librandi, Jul 05 2012 *)
    Table[FromDigits[PadLeft[{1},n,5]],{n,20}] (* or *) LinearRecurrence[ {11,-10},{1,51},20](* Harvey P. Dale, Dec 04 2021 *)

Formula

a(n) = 10*a(n-1) + 41 with a(0)=-4.
From Vincenzo Librandi, Jul 05 2012: (Start)
G.f.: x*(1+40*x)/((1-x)*(1-10*x)).
a(n) = 11*a(n-1) - 10*a(n-2) for n > 2. (End)
E.g.f.: 4 + exp(x)*(5*exp(9*x) - 41)/9. - Elmo R. Oliveira, Sep 09 2024

A099415 Numbers k such that 5*R_k - 4 is prime, where R_k = 11...1 is the repunit (A002275) of length k.

Original entry on oeis.org

12, 13, 609
Offset: 1

Views

Author

Robert G. Wilson v, Oct 14 2004

Keywords

Comments

Also numbers k such that (5*10^k - 41)/9 is prime.
a(4) > 10^5. - Robert Price, Nov 16 2014

Crossrefs

Programs

  • Magma
    [n: n in [0..500] | IsPrime((5*10^n-41) div 9)]; // Vincenzo Librandi, Nov 17 2014
  • Maple
    A099415:=n->`if`(isprime((5*10^n-41)/9), n, NULL): seq(A099415(n), n=1..10^3); # Wesley Ivan Hurt, Nov 16 2014
  • Mathematica
    Do[ If[ PrimeQ[ 5(10^n - 1)/9 - 4], Print[n]], {n, 15000}]
    Select[Range[10000], PrimeQ[(5 10^# - 41) / 9] &] (* Vincenzo Librandi, Nov 17 2014 *)

Formula

a(n) = A056684(n) + 1. - Robert Price, Nov 17 2014
Showing 1-3 of 3 results.