A056789 a(n) = Sum_{k=1..n} lcm(k,n)/gcd(k,n).
1, 3, 10, 19, 51, 48, 148, 147, 253, 253, 606, 352, 1015, 738, 960, 1171, 2313, 1263, 3250, 1869, 2803, 3028, 5820, 2784, 6301, 5073, 6814, 5458, 11775, 4798, 14416, 9363, 11505, 11563, 14898, 9343, 24643, 16248, 19276, 14797, 33621, 14013, 38830
Offset: 1
Examples
a(6) = 6/1 + 6/2 + 6/3 + 12/2 + 30/1 + 6/6 = 48.
Links
- T. D. Noe, Table of n, a(n) for n = 1..1000
Programs
-
Haskell
a056789 = sum . a051537_row -- Reinhard Zumkeller, Jul 07 2013
-
Mathematica
Table[ Sum[ LCM[k, n] / GCD[k, n], {k, 1, n}], {n, 1, 50}] f[p_, e_] := p^2*(p-1)*(p^(3*e)-1)/(p^3-1)+1; a[1] = 1; a[n_] := (1 + Times @@ f @@@ FactorInteger[n])/2; Array[a, 40] (* Amiram Eldar, Oct 05 2023 *)
-
PARI
vector(50, n, sum(k=1, n, lcm(k,n)/gcd(k,n))) \\ Michel Marcus, Nov 08 2014
-
PARI
a(n) = sumdiv(n, d, if(d>1, d^2*eulerphi(d)/2, 1)); \\ Daniel Suteu, Dec 10 2020
Formula
a(n) > n^2*phi(n)/2. - Thomas Ordowski, Nov 08 2014
a(n) = Sum_{k=1..n} k*n/gcd(k,n)^2. - Thomas Ordowski, Nov 08 2014
a(n) = (1/2)*Sum_{d|n} d^2*(d+1) Sum_{j|n/d} mu(j)*j^2. - Felix A. Pahl, Nov 23 2019
a(n) = 1 + Sum_{d|n, d > 1} phi(d^3)/2. - Daniel Suteu, Dec 10 2020
From Amiram Eldar, Oct 05 2023: (Start)
a(n) = (A068963(n)+1)/2.
Sum_{k=1..n} a(k) ~ (Pi^2/120) * n^4. (End)
a(n) < n^3 / 2, n > 1. - Bill McEachen, Jul 18 2024
Hence n^3/log log n << a(n) << n^3. - Charles R Greathouse IV, Jul 25 2024
Extensions
Additional comments from Amarnath Murthy, May 09 2002
Comments