cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A056789 a(n) = Sum_{k=1..n} lcm(k,n)/gcd(k,n).

Original entry on oeis.org

1, 3, 10, 19, 51, 48, 148, 147, 253, 253, 606, 352, 1015, 738, 960, 1171, 2313, 1263, 3250, 1869, 2803, 3028, 5820, 2784, 6301, 5073, 6814, 5458, 11775, 4798, 14416, 9363, 11505, 11563, 14898, 9343, 24643, 16248, 19276, 14797, 33621, 14013, 38830
Offset: 1

Views

Author

Leroy Quet, Aug 20 2000

Keywords

Comments

For prime p, a(p) = 1 + p^2*(p-1)/2.
We note lcm(k,n) = k*n iff gcd(k,n) = 1 (and in general lcm(k,n) equals k*n/gcd(k,n)), and so for these values LCM/GCD = k*n. From A023896, we have that Sum_{k=1..n-1: gcd(k,n)=1} k = n*phi(n)/2, and so Sum_{k=1..n-1: gcd(k,n)=1} k*n = n * Sum_{k=1..n-1: gcd(k,n)=1} k = n^2*phi(n)/2. As this is true, certainly Sum_{k=1..n} lcm(k,n)/gcd(k,n) > n^2*phi(n)/2. - Jon Perry, Nov 09 2014 [Edited by Petros Hadjicostas, May 27 2020]
Conjecture: for prime p, a(p^n) = 1 + (1/2)*(p - 1)*p^2*(p^(3*n) - 1)/(p^3 - 1) for n = 1,2,3,.... Cf. A339384. - Peter Bala, Dec 04 2020
The conjecture can be proven by splitting up the sum like this: a(p^n) = 1 + Sum_{1 <= r < p^n if gcd(p,r) = 1} lcm(p^n,r)/gcd(p^n,r) + Sum_{1 <= r < p^(n-1) if gcd(p,r) = 1} lcm(p^n,p*r)/gcd(p^n,p*r) + … + Sum_{1 <= r < p if gcd(p,r) = 1} lcm(p^n,p^(n-1)*r)/gcd(p^n,p^(n-1)*r) = 1 + Sum_{1 <= r < p^n if gcd(p,r) = 1} p^n*r + Sum_{1 <= r < p^(n-1) if gcd(p,r) = 1} p^(n-1)*r + … + Sum_{1 <= r < p if gcd(p,r) = 1} p*r = 1 + p^n*(1/2)*p^n*phi(p^n) + p^(n-1)*(1/2)*p^(n-1)*phi(p^(n-1)) + … + p*(1/2)*p*phi(p) = 1 + (1/2)*(p-1)*Sum_{k=1..n} p^(3k-1) = 1 + (1/2)*(p-1)*p^2*(p^(3*n)-1)/(p^3-1). - Sebastian Karlsson, Dec 07 2020

Examples

			a(6) = 6/1 + 6/2 + 6/3 + 12/2 + 30/1 + 6/6 = 48.
		

Crossrefs

Row sums of triangle in A051537.

Programs

  • Haskell
    a056789 = sum . a051537_row  -- Reinhard Zumkeller, Jul 07 2013
    
  • Mathematica
    Table[ Sum[ LCM[k, n] / GCD[k, n], {k, 1, n}], {n, 1, 50}]
    f[p_, e_] := p^2*(p-1)*(p^(3*e)-1)/(p^3-1)+1; a[1] = 1; a[n_] := (1 + Times @@ f @@@ FactorInteger[n])/2; Array[a, 40] (* Amiram Eldar, Oct 05 2023 *)
  • PARI
    vector(50, n, sum(k=1, n, lcm(k,n)/gcd(k,n))) \\ Michel Marcus, Nov 08 2014
    
  • PARI
    a(n) = sumdiv(n, d, if(d>1, d^2*eulerphi(d)/2, 1)); \\ Daniel Suteu, Dec 10 2020

Formula

a(n) > n^2*phi(n)/2. - Thomas Ordowski, Nov 08 2014
a(n) = Sum_{k=1..n} k*n/gcd(k,n)^2. - Thomas Ordowski, Nov 08 2014
a(n) = (1/2)*Sum_{d|n} d^2*(d+1) Sum_{j|n/d} mu(j)*j^2. - Felix A. Pahl, Nov 23 2019
a(n) = 1 + Sum_{d|n, d > 1} phi(d^3)/2. - Daniel Suteu, Dec 10 2020
From Amiram Eldar, Oct 05 2023: (Start)
a(n) = (A068963(n)+1)/2.
Sum_{k=1..n} a(k) ~ (Pi^2/120) * n^4. (End)
a(n) < n^3 / 2, n > 1. - Bill McEachen, Jul 18 2024
Hence n^3/log log n << a(n) << n^3. - Charles R Greathouse IV, Jul 25 2024

Extensions

Additional comments from Amarnath Murthy, May 09 2002