A056918 a(n) = 9*a(n-1)-a(n-2); a(0)=2, a(1)=9.
2, 9, 79, 702, 6239, 55449, 492802, 4379769, 38925119, 345946302, 3074591599, 27325378089, 242853811202, 2158358922729, 19182376493359, 170483029517502, 1515164889164159, 13466000972959929, 119678843867475202
Offset: 0
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 0..1000
- P. Bala, Some simple continued fraction expansions for an infinite product, Part 1
- E. I. Emerson, Recurrent Sequences in the Equation DQ^2=R^2+N, Fib. Quart., 7 (1969), pp. 231-242.
- A. F. Horadam, Special Properties of the Sequence W(n){a,b; p,q}, Fib. Quart., Vol. 5, No. 5 (1967), pp. 424-434.
- Tanya Khovanova, Recursive Sequences
- Index entries for recurrences a(n) = k*a(n - 1) +/- a(n - 2)
- Index entries for sequences related to Chebyshev polynomials.
- Index entries for linear recurrences with constant coefficients, signature (9,-1).
Programs
-
Haskell
a056918 n = a056918_list !! n a056918_list = 2 : 9 : zipWith (-) (map (* 9) $ tail a056918_list) a056918_list -- Reinhard Zumkeller, Jan 06 2013
-
Mathematica
a[0] = 2; a[1] = 9; a[n_] := 9a[n - 1] - a[n - 2]; Table[ a[n], {n, 0, 17}] (* Robert G. Wilson v, Jan 30 2004 *)
-
Sage
[lucas_number2(n,9,1) for n in range(23)] # Zerinvary Lajos, Jun 25 2008
Formula
a(n) = 9*S(n-1, 9) - 2*S(n-2, 9) = S(n, 9) - S(n-2, 9) = 2*T(n, 9/2), with S(n, x) := U(n, x/2) (see A049310), S(-1, x) := 0, S(-2, x) := -1. S(n-1, 9)=A018913(n). U-, resp. T-, are Chebyshev's polynomials of the second, resp. first, kind.
a(n) = {9*[((9+sqrt(77))/2)^n - ((9-sqrt(77))/2)^n] - 2*[((9+sqrt(77))/2)^(n-1) - ((9-sqrt(77))/2)^(n-1)]}/sqrt(77).
G.f.: (2-9*x)/(1-9*x+x^2).
a(n) = ap^n + am^n, with ap := (9+sqrt(77))/2 and am := (9-sqrt(77))/2.
G.f.: (2-9*x)/(1-9*x+x^2). - Philippe Deléham, Nov 03 2008
From Peter Bala, Jan 06 2013: (Start)
Let F(x) = product {n = 0..inf} (1 + x^(4*n+1))/(1 + x^(4*n+3)). Let alpha = 1/2*(9 - sqrt(77)). This sequence gives the simple continued fraction expansion of 1 + F(alpha) = 2.11095 50589 89701 91909 ... = 2 + 1/(9 + 1/(79 + 1/(702 + ...))).
Also F(-alpha) = 0.88873 23915 40314 47623 ... has the continued fraction representation 1 - 1/(9 - 1/(79 - 1/(702 - ...))) and the simple continued fraction expansion 1/(1 + 1/((9-2) + 1/(1 + 1/((79-2) + 1/(1 + 1/((702-2) + 1/(1 + ...))))))). F(alpha)*F(-alpha) has the simple continued fraction expansion 1/(1 + 1/((9^2-4) + 1/(1 + 1/((79^2-4) + 1/(1 + 1/((702^2-4) + 1/(1 + ...))))))). Cf. A005248.
(End)
Extensions
More terms from James Sellers, Sep 07 2000
Chebyshev comments from Wolfdieter Lang, Oct 31 2002
Comments