A056991 Numbers with digital root 1, 4, 7 or 9.
1, 4, 7, 9, 10, 13, 16, 18, 19, 22, 25, 27, 28, 31, 34, 36, 37, 40, 43, 45, 46, 49, 52, 54, 55, 58, 61, 63, 64, 67, 70, 72, 73, 76, 79, 81, 82, 85, 88, 90, 91, 94, 97, 99, 100, 103, 106, 108, 109, 112, 115, 117, 118, 121, 124, 126, 127, 130, 133, 135, 136, 139, 142
Offset: 1
Links
- R. J. Mathar, Table of n, a(n) for n = 1..22222
- H. I. Okagbue, M. O. Adamu, S. A. Iyase, and A. A. Opanuga, Sequence of Integers Generated by Summing the Digits of their Squares, Indian Journal of Science and Technology, Vol 8(15), DOI: 10.17485/ijst/2015/v8i15/69912, July 2015.
- Eric Weisstein's World of Mathematics, Square Number
- Index entries for linear recurrences with constant coefficients, signature (1,0,0,1,-1).
Crossrefs
Programs
-
Maple
seq( 3*(n-floor(n/4)) - (3-I^n-(-I)^n-(-1)^n)/2, n=1..63); # Gary Detlefs, Mar 19 2010
-
Mathematica
LinearRecurrence[{1,0,0,1,-1},{1,4,7,9,10},70] (* Harvey P. Dale, Aug 29 2015 *)
-
PARI
forstep(n=1,1e3,[3,3,2,1],print1(n", ")) \\ Charles R Greathouse IV, Sep 21 2012
Formula
From R. J. Mathar, Feb 14 2008: (Start)
O.g.f.: x*(2x+1)*(x^2+x+1)/((-1+x)^2*(x+1)*(x^2+1)).
a(n) = a(n-4) + 9. (End)
a(n) = 3*(n - floor(n/4)) - (3 - i^n - (-i)^n - (-1)^n)/2, where i = sqrt(-1). - Gary Detlefs, Mar 19 2010
a(n) = a(n-1)+a(n-4)-a(n-5). - Wesley Ivan Hurt, May 27 2021
a(n) = 3*n - floor(n/4) - 2*floor((n+3)/4). - Ridouane Oudra, Jan 21 2024
E.g.f.: (cos(x) + (9*x - 1)*cosh(x) - 3*sin(x) + (9*x - 2)*sinh(x))/4. - Stefano Spezia, Feb 21 2024
Extensions
Edited by N. J. A. Sloane, May 16 2008 at the suggestion of R. J. Mathar
Comments