cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A056992 Digital roots of square numbers A000290.

Original entry on oeis.org

1, 4, 9, 7, 7, 9, 4, 1, 9, 1, 4, 9, 7, 7, 9, 4, 1, 9, 1, 4, 9, 7, 7, 9, 4, 1, 9, 1, 4, 9, 7, 7, 9, 4, 1, 9, 1, 4, 9, 7, 7, 9, 4, 1, 9, 1, 4, 9, 7, 7, 9, 4, 1, 9, 1, 4, 9, 7, 7, 9, 4, 1, 9, 1, 4, 9, 7, 7, 9, 4, 1, 9, 1, 4, 9, 7, 7, 9, 4, 1, 9, 1, 4, 9, 7, 7, 9
Offset: 1

Views

Author

Keywords

Comments

Cyclic with a period of nine. Note that (7, 9, 4, 1, 9, 1, 4, 9, 7) is palindromic.
a(n) is also the decimal expansion of 499264730/333333333. - Enrique Pérez Herrero, Jul 28 2009
a(n) is also the digital root of A002477(n). - Enrique Pérez Herrero, Dec 20 2009
First comment above by Enrique Pérez Herrero and his formula below together give the following identity: 1+Sum_{n>=2}(1+9*((n^2-1)/9-floor((n^2-1)/9)))/10^(n-1) = 499264730/333333333 = 1.49779419149779419149779419... - Alexander R. Povolotsky, Jun 14 2012

Crossrefs

Programs

  • Haskell
    a056992 = a010888 . a000290  -- Reinhard Zumkeller, Mar 19 2014
  • Mathematica
    DigitalRoot[n_Integer?NonNegative] := 1 + 9*FractionalPart[(n - 1)/9] A056992[n_]:=DigitalRoot[n^2] (* Enrique Pérez Herrero, Dec 20 2009 *)
    Table[FixedPoint[Total[IntegerDigits[#]]&,n^2],{n,90}] (* Zak Seidov, Jun 13 2015 *)
    PadRight[{},120,{1,4,9,7,7,9,4,1,9}] (* Harvey P. Dale, Apr 16 2022 *)

Formula

a(n) = 1+9*{(n^2-1)/9}, where the symbol {} means fractional part. - Enrique Pérez Herrero, Dec 20 2009
a(n) = 3(1 + cos(2n*Pi/3) + cos(4n*Pi/3)) + mod(3n^4+3n^6+4n^8,9). - Ant King, Oct 07 2009
G.f.: x*(1+4*x+9*x^2+7*x^3+7*x^4+9*x^5+4*x^6+x^7+9*x^8)/((1-x)*(1+x+x^2)*(1+x^3+x^6)). - Ant King, Oct 20 2009
a(n) = A010888(A057147(n)). - Reinhard Zumkeller, Mar 19 2014