cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A057427 a(n) = 1 if n > 0, a(n) = 0 if n = 0; series expansion of x/(1-x).

Original entry on oeis.org

0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
Offset: 0

Views

Author

Henry Bottomley, Sep 05 2000

Keywords

Comments

Parity of (n+1)-st prime, A000040(n+1). - Philippe Deléham, Apr 04 2009
Decimal expansion of 1/90.
Partial sums of A063524 (characteristic function of 1). - Jeremy Gardiner, Sep 08 2002
Characteristic function of positive integers. - Franklin T. Adams-Watters, Aug 01 2011
Number of binary bracelets of n beads, 0 of them 0. Number of binary bracelets of n beads, 1 of them 0. Number of binary bracelets of n beads, 0 of them 0, with 00 prohibited. For n>=2, a(n-1) is the number of binary bracelets of n beads, one of them 0, with 00 prohibited. - Washington Bomfim, Aug 27 2008
Central terms of the triangle in A152487. - Reinhard Zumkeller, Dec 06 2008
This is sgn(n) (or sign(n), or signum(n)) restricted to nonnegative integers. See sequence A261012 for a version that extends the sequence backwards to offset -1.

Examples

			1/90 = .0111111111111111111...
G.f. = x + x^2 + x^3 + x^4 + x^5 + x^6 + x^7 + x^8 + x^9 + x^10 + x^11 + ...
		

References

  • T. M. MacRobert, Functions of a Complex Variable, 4th ed., Macmillan and Co., London, 1958, p. 90.

Crossrefs

Programs

Formula

G.f.: x / (1 - x).
G.f.: Sum_{k>=0} 2^k * x^(2^k) / (1 + x^(2^k)). - Michael Somos, Sep 11 2005
a(A000027(n)) = 1; a(A000004(n)) = 0. - Reinhard Zumkeller, Oct 11 2008
a(n) = A000007(0^n). - Jaume Oliver Lafont, Mar 19 2009
From Michael Somos, Aug 17 2015: (Start)
a(n) = -a(-n) for all n in Z if a(n) is treated as sgn(n).
Sum_{k<0} a(k) * x^k = 1 / (1 - x) if abs(x) > 1. (End)
Dirichlet g.f.: zeta(s) - 1. - Álvar Ibeas, Nov 29 2015; corrected by Francois Oger, Oct 26 2019
a(n) = A001065(n+1) - A048050(n+1). - Omar E. Pol, Apr 30 2018
E.g.f.: e^x - 1. - Francois Oger, Oct 26 2019
a(n) = 1-A000007(n). - Chai Wah Wu, Nov 14 2022

Extensions

Entry edited at the suggestion of Robert G. Wilson v by N. J. A. Sloane, Aug 16 2015