A057588 Kummer numbers: -1 + product of first n consecutive primes.
1, 5, 29, 209, 2309, 30029, 510509, 9699689, 223092869, 6469693229, 200560490129, 7420738134809, 304250263527209, 13082761331670029, 614889782588491409, 32589158477190044729, 1922760350154212639069, 117288381359406970983269, 7858321551080267055879089
Offset: 1
Links
- T. D. Noe, Table of n, a(n) for n = 1..100
- E. E. Kummer, Neuer elementarer Beweis des Satzes, dass die Anzahl aller Primzahlen eine unendliche ist, Monatsber. Preuss. Akad. Wiss., Berlin 1878/9, pp. 777-778. [Collected Papers, II, pp. 669-670, Springer, Berlin-Heidelberg, 1975.] Cited in Mestrovic.
- Romeo Meštrović, Euclid's theorem on the infinitude of primes: a historical survey of its proofs (300 BC--2012) and another new proof, arXiv preprint arXiv:1202.3670 [math.HO], 2012. - From _N. J. A. Sloane_, Jun 13 2012
- Hisanori Mishima, Factorizations of many number sequences.
- Robert G. Wilson v, Explicit factorizations.
- Index entries for sequences related to primorial base
Programs
-
Haskell
a057588 = (subtract 1) . product . (flip take a000040_list) -- Reinhard Zumkeller, Mar 27 2013
-
Maple
seq(mul(ithprime(k), k=1..n) - 1, n=1..100); # Muniru A Asiru, Jan 19 2018
-
Mathematica
Table[Product[Prime[k], {k, 1, n}] - 1, {n, 1, 18}] (* Artur Jasinski, Jan 01 2007 *) FoldList[Times,1,Prime[Range[20]]]-1 (* Harvey P. Dale, Apr 17 2011 *) Table[ChineseRemainder[PadRight[{},n,-1],Prime[Range[n]]],{n,20}] (* Harvey P. Dale, Jul 01 2017 *)
-
PARI
a(n) = prod(k=1, n, prime(k)) - 1; \\ Michel Marcus, Oct 02 2015
-
Python
from sympy import primorial def A057588(n): return primorial(n)-1 # Chai Wah Wu, Feb 25 2023
Formula
a(n) = A002110(n) - 1. - Altug Alkan, Oct 02 2015
a(n) = A006862(n) - 2. - Antti Karttunen, Nov 17 2024
Extensions
More terms from Larry Reeves (larryr(AT)acm.org), Oct 05 2000
Comments