cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A057661 a(n) = Sum_{k=1..n} lcm(n,k)/n.

Original entry on oeis.org

1, 2, 4, 6, 11, 11, 22, 22, 31, 32, 56, 39, 79, 65, 74, 86, 137, 92, 172, 116, 151, 167, 254, 151, 261, 236, 274, 237, 407, 221, 466, 342, 389, 410, 452, 336, 667, 515, 550, 452, 821, 452, 904, 611, 641, 761, 1082, 599, 1051, 782, 956, 864, 1379, 821, 1166
Offset: 1

Views

Author

Henry Gould, Oct 15 2000

Keywords

Comments

Sum of numerators of n-th order Farey series (cf. A006842). - Benoit Cloitre, Oct 28 2002
Equals row sums of triangle A143613. - Gary W. Adamson, Aug 27 2008
Equals row sums of triangle A159936. - Gary W. Adamson, Apr 26 2009
Also row sums of triangle A164306. - Reinhard Zumkeller, Aug 12 2009

References

  • H. W. Gould and Temba Shonhiwa, Functions of GCD's and LCM's, Indian J. Math. (Allahabad), 39 (1997), 11-35.
  • H. W. Gould and Temba Shonhiwa, A generalization of Cesaro's function and other results, Indian J. Math. (Allahabad), 39 (1997), 183-194.

Crossrefs

Programs

  • Haskell
    a057661 n = a051193 n `div` n  -- Reinhard Zumkeller, Jun 10 2015
    
  • Magma
    [&+[&+[h: h in [1..d] | GCD(h,d) eq 1]: d in Divisors(n)]: n in [1..100]]; // Jaroslav Krizek, Dec 28 2016
    
  • Mathematica
    Table[Total[Numerator[Range[n]/n]], {n, 55}] (* Alonso del Arte, Oct 07 2011 *)
    f[p_, e_] := (p^(2*e + 1) + 1)/(p + 1); a[n_] := (1 + Times @@ f @@@ FactorInteger[n])/2; Array[a, 100] (* Amiram Eldar, Apr 26 2023 *)
  • PARI
    a(n)=sum(k=1,n,lcm(n,k))/n \\ Charles R Greathouse IV, Feb 07 2017
    
  • Python
    from math import lcm
    def A057661(n): return sum(lcm(n,k)//n for k in range(1,n+1)) # Chai Wah Wu, Aug 24 2023
    
  • Python
    from math import prod
    from sympy import factorint
    def A057661(n): return 1+prod((p**((e<<1)+1)+1)//(p+1) for p,e in factorint(n).items())>>1 # Chai Wah Wu, Aug 05 2024

Formula

a(n) = (1+A057660(n))/2.
a(n) = A051193(n)/n.
a(n) = Sum_{d|n} psi(d), where psi(m) = is the sum of totatives of m (A023896). - Jaroslav Krizek, Dec 28 2016
a(n) = Sum_{i=1..n} denominator(n/i). - Wesley Ivan Hurt, Feb 26 2017
G.f.: x/(2*(1 - x)) + (1/2)*Sum_{k>=1} k*phi(k)*x^k/(1 - x^k), where phi() is the Euler totient function (A000010). - Ilya Gutkovskiy, Aug 31 2017
If p is prime, then a(p) = T(p-1) + 1 = p(p-1)/2 + 1, where T(n) = n(n+1)/2 is the n-th triangular number (A000217). - David Terr, Feb 10 2019
Sum_{k=1..n} a(k) ~ zeta(3) * n^3 / Pi^2. - Vaclav Kotesovec, May 29 2021
Dirichlet g.f.: zeta(s)*(1 + zeta(s-2)/zeta(s-1))/2 (Franco, 2019). - Amiram Eldar, Mar 26 2022

Extensions

More terms from James Sellers, Oct 16 2000