cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A057728 A triangular table of decreasing powers of two (with first column all ones).

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 4, 2, 1, 1, 8, 4, 2, 1, 1, 16, 8, 4, 2, 1, 1, 32, 16, 8, 4, 2, 1, 1, 64, 32, 16, 8, 4, 2, 1, 1, 128, 64, 32, 16, 8, 4, 2, 1, 1, 256, 128, 64, 32, 16, 8, 4, 2, 1, 1, 512, 256, 128, 64, 32, 16, 8, 4, 2, 1, 1, 1024, 512, 256, 128, 64, 32, 16, 8, 4, 2, 1, 1, 2048, 1024, 512, 256, 128, 64, 32, 16, 8, 4, 2, 1
Offset: 1

Views

Author

Alford Arnold, Oct 29 2000

Keywords

Comments

First differences of sequence A023758.
A023758 is the sequence of partial sums of a(n) with row sums A000337.
2^A004736(n) is a sequence closely related to a(n).
T(n,k) is the number of length n binary words having an odd number of 0's with exactly k 1's following the last 0, n >= 1, 0 <= k <= n - 1. - Geoffrey Critzer, Jan 28 2014

Examples

			Triangle starts:
  1,
  1,    1,
  1,    2,    1,
  1,    4,    2,   1,
  1,    8,    4,   2,   1,
  1,   16,    8,   4,   2,   1,
  1,   32,   16,   8,   4,   2,  1,
  1,   64,   32,  16,   8,   4,  2,  1,
  1,  128,   64,  32,  16,   8,  4,  2,  1,
  1,  256,  128,  64,  32,  16,  8,  4,  2, 1,
  1,  512,  256, 128,  64,  32, 16,  8,  4, 2, 1,
  1, 1024,  512, 256, 128,  64, 32, 16,  8, 4, 2, 1,
  1, 2048, 1024, 512, 256, 128, 64, 32, 16, 8, 4, 2, 1,
  ... - _Joerg Arndt_, May 04 2014
When viewed as a triangular array, row 8 of A023758 is 128 192 224 240 248 252 254 255 so row 8 here is 1 64 32 16 8 4 2 1
From _Mats Granvik_, Jan 19 2009: (Start)
Except for the first term the table can also be formatted as:
   1,
   1, 1,
   2, 1, 1,
   4, 2, 1, 1,
   8, 4, 2, 1, 1,
  16, 8, 4, 2, 1, 1,
  ...
(End)
		

Crossrefs

Cf. A155038 (essentially the same as this sequence). [Mats Granvik, Jan 19 2009]

Programs

  • Haskell
    a057728 n k = a057728_tabl !! (n-1) !! (k-1)
    a057728_row n = a057728_tabl !! (n-1)
    a057728_tabl = iterate
       (\row -> zipWith (+) (row ++ [0]) ([0] ++ tail row ++ [1])) [1]
    -- Reinhard Zumkeller, Aug 08 2013
    
  • Mathematica
    nn=10;Map[Select[#,#>0&]&,CoefficientList[Series[(x-x^2)/(1-2x)/(1-y x),{x,0,nn}],{x,y}]]//Grid (* Geoffrey Critzer, Jan 28 2014 *)
    Module[{nn=12,ts},ts=2^Range[0,nn];Table[Join[{1},Reverse[Take[ts,n]]],{n,0,nn}]]//Flatten (* Harvey P. Dale, Jan 15 2022 *)
  • Maxima
    T(n, k) := if k = 0 then 1 else  2^(n - k - 1)$
    create_list(T(n, k), n, 0, 12, k, 0, n - 1); /* Franck Maminirina Ramaharo, Jan 09 2019 */

Formula

G.f.: (x - x^2)/((1 - 2*x)*(1 - y*x)). - Geoffrey Critzer, Jan 28 2014 [This produces the triangle shown by Mats Granvik in example section. - Franck Maminirina Ramaharo, Jan 09 2019]
From Franck Maminirina Ramaharo, Jan 09 2019: (Start)
G.f.: x*(1 - 2*x + y*x^2)/((1 - x)*(1 - 2*x)*(1 - x*y)).
E.g.f.: (exp(2*x)*y - 2*exp(x*y))/(4 - 2*y) + exp(x) - 1/2. (End)

Extensions

More terms from Larry Reeves (larryr(AT)acm.org), Oct 30 2000