cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A023758 Numbers of the form 2^i - 2^j with i >= j.

Original entry on oeis.org

0, 1, 2, 3, 4, 6, 7, 8, 12, 14, 15, 16, 24, 28, 30, 31, 32, 48, 56, 60, 62, 63, 64, 96, 112, 120, 124, 126, 127, 128, 192, 224, 240, 248, 252, 254, 255, 256, 384, 448, 480, 496, 504, 508, 510, 511, 512, 768, 896, 960, 992, 1008, 1016, 1020, 1022, 1023
Offset: 1

Views

Author

Keywords

Comments

Numbers whose digits in base 2 are in nonincreasing order.
Might be called "nialpdromes".
Subset of A077436. Proof: Since a(n) is of the form (2^i-1)*2^j, i,j >= 0, a(n)^2 = (2^(2i) - 2^(i+1))*2^(2j) + 2^(2j) where the first sum term has i-1 one bits and its 2j-th bit is zero, while the second sum term switches the 2j-th bit to one, giving i one bits, as in a(n). - Ralf Stephan, Mar 08 2004
Numbers whose binary representation contains no "01". - Benoit Cloitre, May 23 2004
Every polynomial with coefficients equal to 1 for the leading terms and 0 after that, evaluated at 2. For instance a(13) = x^4 + x^3 + x^2 at 2, a(14) = x^4 + x^3 + x^2 + x at 2. - Ben Paul Thurston, Jan 11 2008
From Gary W. Adamson, Jul 18 2008: (Start)
As a triangle by rows starting:
1;
2, 3;
4, 6, 7;
8, 12, 14, 15;
16, 24, 28, 30, 31;
...,
equals A000012 * A130123 * A000012, where A130123 = (1, 0,2; 0,0,4; 0,0,0,8; ...). Row sums of this triangle = A000337 starting (1, 5, 17, 49, 129, ...). (End)
First differences are A057728 = 1; 1; 1; 1; 2,1; 1; 4,2,1; 1; 8,4,2,1; 1; ... i.e., decreasing powers of 2, separated by another "1". - M. F. Hasler, May 06 2009
Apart from first term, numbers that are powers of 2 or the sum of some consecutive powers of 2. - Omar E. Pol, Feb 14 2013
From Andres Cicuttin, Apr 29 2016: (Start)
Numbers that can be digitally generated with twisted ring (Johnson) counters. This is, the binary digits of a(n) correspond to those stored in a shift register where the input bit of the first bit storage element is the inverted output of the last storage element. After starting with all 0’s, each new state is obtained by rotating the stored bits but inverting at each state transition the last bit that goes to the first position (see link).
Examples: for a(n) represented by three bits
Binary
a(5)= 4 -> 100 last bit = 0
a(6)= 6 -> 110 first bit = 1 (inverted last bit of previous number)
a(7)= 7 -> 111
and for a(n) represented by four bits
Binary
a(8) = 8 -> 1000
a(9) = 12 -> 1100 last bit = 0
a(10)= 14 -> 1110 first bit = 1 (inverted last bit of previous number)
a(11)= 15 -> 1111
(End)
Powers of 2 represented in bases which are terms of this sequence must always contain at least one digit which is also a power of 2. This is because 2^i mod (2^i - 2^j) = 2^j, which means the last digit always cycles through powers of 2 (or if i=j+1 then the first digit is a power of 2 and the rest are trailing zeros). The only known non-member of this sequence with this property is 5. - Ely Golden, Sep 05 2017
Numbers k such that k = 2^(1 + A000523(k)) - 2^A007814(k). - Daniel Starodubtsev, Aug 05 2021
A002260(n) = v(a(n)/2^v(a(n))+1) and A002024(n) = A002260(n) + v(a(n)) where v is the dyadic valuation (i.e., A007814). - Lorenzo Sauras Altuzarra, Feb 01 2023

Examples

			a(22) = 64 = 32 + 32 = 2^5 + a(16) = 2^A003056(20) + a(22-5-1).
a(23) = 96 = 64 + 32 = 2^6 + a(16) = 2^A003056(21) + a(23-6-1).
a(24) = 112 = 64 + 48 = 2^6 + a(17) = 2^A003056(22) + a(24-6-1).
		

Crossrefs

A000337(r) = sum of row T(r, c) with 0 <= c < r. See also A002024, A003056, A140129, A140130, A221975.
Cf. A007088, A130123, A101082 (complement), A340375 (characteristic function).
This is the base-2 version of A064222. First differences are A057728.
Subsequence of A077436, of A129523, of A277704, and of A333762.
Subsequences: A043569 (nonzero even terms, or equally, nonzero terms doubled), A175332, A272615, A335431, A000396 (its even terms only), A324200.
Positions of zeros in A049502, A265397, A277899, A284264.
Positions of ones in A283983, A283989.
Positions of nonzero terms in A341509 (apart from the initial zero).
Positions of squarefree terms in A260443.
Fixed points of A264977, A277711, A283165, A334666.
Distinct terms in A340632.
Cf. also A309758, A309759, A309761 (for analogous sequences).

Programs

  • Haskell
    import Data.Set (singleton, deleteFindMin, insert)
    a023758 n = a023758_list !! (n-1)
    a023758_list = 0 : f (singleton 1) where
    f s = x : f (if even x then insert z s' else insert z $ insert (z+1) s')
    where z = 2*x; (x, s') = deleteFindMin s
    -- Reinhard Zumkeller, Sep 24 2014, Dec 19 2012
    
  • Maple
    a:=proc(n) local n2,d: n2:=convert(n,base,2): d:={seq(n2[j]-n2[j-1],j=2..nops(n2))}: if n=0 then 0 elif n=1 then 1 elif d={0,1} or d={0} or d={1} then n else fi end: seq(a(n),n=0..2100); # Emeric Deutsch, Apr 22 2006
  • Mathematica
    Union[Flatten[Table[2^i - 2^j, {i, 0, 100}, {j, 0, i}]]] (* T. D. Noe, Mar 15 2011 *)
    Select[Range[0, 2^10], NoneTrue[Differences@ IntegerDigits[#, 2], # > 0 &] &] (* Michael De Vlieger, Sep 05 2017 *)
  • PARI
    for(n=0,2500,if(prod(k=1,length(binary(n))-1,component(binary(n),k)+1-component(binary(n),k+1))>0,print1(n,",")))
    
  • PARI
    A023758(n)= my(r=round(sqrt(2*n--))); (1<<(n-r*(r-1)/2)-1)<<(r*(r+1)/2-n)
    /* or, to illustrate the "decreasing digit" property and analogy to A064222: */
    A023758(n,show=0)={ my(a=0); while(n--, show & print1(a","); a=vecsort(binary(a+1)); a*=vector(#a,j,2^(j-1))~); a} \\ M. F. Hasler, May 06 2009
    
  • PARI
    is(n)=if(n<5,1,n>>=valuation(n,2);n++;n>>valuation(n,2)==1) \\ Charles R Greathouse IV, Jan 04 2016
    
  • PARI
    list(lim)=my(v=List([0]),t); for(i=1,logint(lim\1+1,2), t=2^i-1; while(t<=lim, listput(v,t); t*=2)); Set(v) \\ Charles R Greathouse IV, May 03 2016
    
  • Python
    def a_next(a_n): return (a_n | (a_n >> 1)) + (a_n & 1)
    a_n = 1; a = [0]
    for i in range(55): a.append(a_n); a_n = a_next(a_n) # Falk Hüffner, Feb 19 2022
    
  • Python
    from math import isqrt
    def A023758(n): return (1<<(m:=isqrt(n-1<<3)+1>>1))-(1<<(m*(m+1)-(n-1<<1)>>1)) # Chai Wah Wu, Feb 23 2025

Formula

a(n) = 2^s(n) - 2^((s(n)^2 + s(n) - 2n)/2) where s(n) = ceiling((-1 + sqrt(1+8n))/2). - Sam Alexander, Jan 08 2005
a(n) = 2^k + a(n-k-1) for 1 < n and k = A003056(n-2). The rows of T(r, c) = 2^r-2^c for 0 <= c < r read from right to left produce this sequence: 1; 2, 3; 4, 6, 7; 8, 12, 14, 15; ... - Frank Ellermann, Dec 06 2001
For n > 0, a(n) mod 2 = A010054(n). - Benoit Cloitre, May 23 2004
A140130(a(n)) = 1 and for n > 1: A140129(a(n)) = A002262(n-2). - Reinhard Zumkeller, May 14 2008
a(n+1) = (2^(n - r(r-1)/2) - 1) 2^(r(r+1)/2 - n), where r=round(sqrt(2n)). - M. F. Hasler, May 06 2009
Start with A000225. If k is in the sequence, then so is 2k. - Ralf Stephan, Aug 16 2013
G.f.: (x^2/((2-x)*(1-x)))*(1 + Sum_{k>=0} x^((k^2+k)/2)*(1 + x*(2^k-1))). The sum is related to Jacobi theta functions. - Robert Israel, Feb 24 2015
A049502(a(n)) = 0. - Reinhard Zumkeller, Jun 17 2015
a(n) = a(n-1) + a(n-d)/a(d*(d+1)/2 + 2) if n > 1, d > 0, where d = A002262(n-2). - Yuchun Ji, May 11 2020
A277699(a(n)) = a(n)^2, A306441(a(n)) = a(n+1). - Antti Karttunen, Feb 15 2021 (the latter identity from A306441)
Sum_{n>=2} 1/a(n) = A211705. - Amiram Eldar, Feb 20 2022

Extensions

Definition changed by N. J. A. Sloane, Jan 05 2008

A152568 Triangle T(n,k) read by rows: T(n,n) = -1, T(n,0) = 2^(n - 1), T(n,k) = -2^(n - k - 1), 1 <= k <= n - 1.

Original entry on oeis.org

-1, 1, -1, 2, -1, -1, 4, -2, -1, -1, 8, -4, -2, -1, -1, 16, -8, -4, -2, -1, -1, 32, -16, -8, -4, -2, -1, -1, 64, -32, -16, -8, -4, -2, -1, -1, 128, -64, -32, -16, -8, -4, -2, -1, -1, 256, -128, -64, -32, -16, -8, -4, -2, -1, -1, 512, -256, -128, -64, -32, -16, -8, -4, -2
Offset: 0

Views

Author

Roger L. Bagula, Dec 08 2008

Keywords

Comments

Except for n = 0, the row sums are zero.

Examples

			Triangle begins:
   -1;
    1,   -1;
    2,   -1,   -1;
    4,   -2,   -1,  -1;
    8,   -4,   -2,  -1,  -1;
   16,   -8,   -4,  -2,  -1,  -1;
   32,  -16,   -8,  -4,  -2,  -1, -1;
   64,  -32,  -16,  -8,  -4,  -2, -1, -1;
  128,  -64,  -32, -16,  -8,  -4, -2, -1, -1;
  256, -128,  -64, -32, -16,  -8, -4, -2, -1, -1;
  512, -256, -128, -64, -32, -16, -8, -4, -2, -1, -1;
  ...
		

Crossrefs

Programs

  • Mathematica
    b[0] = {-1}; b[1] = {1, -1};
    b[n_] := b[n] = Join[{2^(n - 1)}, {-b[n - 1][[1]]}, Table[b[n - 1][[i]], {i, 2, Length[b[n - 1]]}]]
    Flatten[Table[b[n], {n, 0, 10}]]
  • Maxima
    T(n, k) := if k = n then -1 else if k = 0 then 2^(n - 1) else -2^(n - k - 1)$
    create_list(T(n, k), n, 0, 20, k, 0, n); /* Franck Maminirina Ramaharo, Jan 08 2019 */

Formula

From Franck Maminirina Ramaharo, Jan 08 2019: (Start)
G.f.: -(1 - 3*y + 2*x*y^2)/(1 - (2 + x)*y + 2*x*y^2).
E.g.f.: (exp(2*y) - exp(x*y))*(1 - x)/(2 - x) - 1. (End)

Extensions

Unrelated material removed by the Assoc. Eds. of the OEIS, Jun 07 2010

A342126 The binary expansion of a(n) corresponds to that of n where all the 1's have been replaced by 0's except in the first run of 1's.

Original entry on oeis.org

0, 1, 2, 3, 4, 4, 6, 7, 8, 8, 8, 8, 12, 12, 14, 15, 16, 16, 16, 16, 16, 16, 16, 16, 24, 24, 24, 24, 28, 28, 30, 31, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 48, 48, 48, 48, 48, 48, 48, 48, 56, 56, 56, 56, 60, 60, 62, 63, 64, 64, 64, 64
Offset: 0

Views

Author

Rémy Sigrist, Apr 25 2021

Keywords

Comments

In other words, this sequence gives the first run of 1's in the binary expansion of a number.
A023758(n) appears A057728(n) times.

Examples

			The first terms, alongside their binary expansion, are:
  n   a(n)  bin(n)  bin(a(n))
  --  ----  ------  ---------
   0     0       0          0
   1     1       1          1
   2     2      10         10
   3     3      11         11
   4     4     100        100
   5     4     101        100
   6     6     110        110
   7     7     111        111
   8     8    1000       1000
   9     8    1001       1000
  10     8    1010       1000
  11     8    1011       1000
  12    12    1100       1100
  13    12    1101       1100
  14    14    1110       1110
  15    15    1111       1111
		

Crossrefs

Programs

  • PARI
    a(n) = { my (b=binary(n), p=1); for (k=1, #b, b[k] = p*=b[k]); fromdigits(b, 2) }
    
  • Python
    def A342126(n):
        s = bin(n)[2:]
        i = s.find('0')
        return n if i == -1 else (2**i-1)*2**(len(s)-i) # Chai Wah Wu, Apr 29 2021

Formula

a(n) = n - A087734(n).
a(2*n) = 2*a(n).
a(a(n)) = a(n).
a(n) <= n with equality iff n belongs to A023758.

A152571 Triangle T(n,k) read by rows: T(n,n) = -1, T(n,0) = 4^(n - 1), T(n,k) = -4^(n - k - 1), 1 <= k <= n - 1.

Original entry on oeis.org

-1, 1, -1, 4, -1, -1, 16, -4, -1, -1, 64, -16, -4, -1, -1, 256, -64, -16, -4, -1, -1, 1024, -256, -64, -16, -4, -1, -1, 4096, -1024, -256, -64, -16, -4, -1, -1, 16384, -4096, -1024, -256, -64, -16, -4, -1, -1, 65536, -16384, -4096, -1024, -256, -64, -16, -4, -1, -1
Offset: 0

Views

Author

Roger L. Bagula, Dec 08 2008

Keywords

Examples

			Triangle begins:
      -1;
       1,     -1;
       4,     -1,     -1;
      16,     -4,     -1,    -1;
      64,    -16,     -4,    -1,    -1;
     256,    -64,    -16,    -4,    -1,   -1;
    1024,   -256,    -64,   -16,    -4,   -1,  -1;
    4096,  -1024,   -256,   -64,   -16,   -4,  -1,  -1;
   16384,  -4096,  -1024,  -256,   -64,  -16,  -4,  -1, -1;
   65536, -16384,  -4096, -1024,  -256,  -64, -16,  -4, -1, -1;
  262144, -65536, -16384, -4096, -1024, -256, -64, -16, -4, -1, -1;
     ...
		

Crossrefs

Row sums (except row 0): A020988.

Programs

  • Mathematica
    b[0] = {-1}; b[1] = {1, -1};
    b[n_] := b[n] = Join[{4^(n - 1)}, {-b[n - 1][[1]]}, Table[b[n - 1][[i]], {i, 2, Length[b[n - 1]]}]];
    Flatten[Table[b[n], {n, 0, 10}]]
  • Maxima
    T(n, k) := if k = n then -1 else if k = 0 then 4^(n - 1) else -4^(n - k - 1)$
    create_list(T(n, k), n, 0, 20, k, 0, n); /* Franck Maminirina Ramaharo, Jan 08 2019 */

Formula

From Franck Maminirina Ramaharo, Jan 08 2019: (Start)
G.f.: -(1 - 5*y + 2*x*y^2)/(1 - (4 + x)*y + 4*x*y^2).
E.g.f.: -(4 - x - (2 - x)*exp(4*y) + (6 - 2*x)*exp(x*y))/(8 - 2*x). (End)

Extensions

Edited by Franck Maminirina Ramaharo, Jan 08 2019

A155038 Triangle read by rows: T(n,k) is the number of compositions of n with first part k.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 4, 2, 1, 1, 8, 4, 2, 1, 1, 16, 8, 4, 2, 1, 1, 32, 16, 8, 4, 2, 1, 1, 64, 32, 16, 8, 4, 2, 1, 1, 128, 64, 32, 16, 8, 4, 2, 1, 1, 256, 128, 64, 32, 16, 8, 4, 2, 1, 1, 512, 256, 128, 64, 32, 16, 8, 4, 2, 1, 1, 1024, 512, 256, 128, 64, 32, 16, 8, 4, 2, 1, 1, 2048, 1024, 512
Offset: 1

Views

Author

Mats Granvik, Jan 19 2009

Keywords

Comments

Previous name was: Matrix inverse of A154990.
Apart from first term essentially the same as A057728.
A011782 appears in the columns.
Riordan array ((1-x)/(1-2x), x). - Philippe Deléham, Jan 24 2010
Indexing the triangle from n=0 and k=0, T(n,k) is the number of binary words of length n that begin with a run of exactly k 0's. O.g.f.: 1/((1-y*x)*(1-x/(1-x))). - Geoffrey Critzer, Feb 15 2012

Examples

			T(5,2) = 4 because the compositions of 5 with first part 2 are: [2,3], [2,2,1], [2,1,2], and [2,1,1,1]. - _Emeric Deutsch_, Jan 12 2018
Table begins:
   1,
   1,  1,
   2,  1,  1,
   4,  2,  1,  1,
   8,  4,  2,  1,  1,
  16,  8,  4,  2,  1,  1,
  32, 16,  8,  4,  2,  1,  1,
  64, 32, 16,  8,  4,  2,  1,  1,
Production matrix begins:
  1, 1
  1, 0, 1
  1, 0, 0, 1
  1, 0, 0, 0, 1
  1, 0, 0, 0, 0, 1
  1, 0, 0, 0, 0, 0, 1
  1, 0, 0, 0, 0, 0, 0, 1
  1, 0, 0, 0, 0, 0, 0, 0, 1
  ... - _Philippe Deléham_, Oct 04 2014
		

Crossrefs

Programs

  • Haskell
    a155038 n k = a155038_tabl !! (n-1) !! (k-1)
    a155038_row n = a155038_tabl !! (n-1)
    a155038_tabl = iterate
       (\row -> zipWith (+) (row ++ [0]) (init row ++ [0,1])) [1]
    -- Reinhard Zumkeller, Aug 08 2013
  • Maple
    T := proc(n, k) if k = n then 1 elif k < n then 2^(n-k-1) else 0 end if end proc: for n to 13 do seq(T(n, k), k = 1 .. n) end do; # yields sequence in triangular form - Emeric Deutsch, Jan 12 2018
    G:= (1-2*x+t*x^2)/((1-2*x)*(1-t*x)): Gser := simplify(series(G, x = 0, 15)): for n to 14 do P[n] := coeff(Gser, x, n) end do: for n to 14 do seq(coeff(P[n], t, j), j = 1 .. n) end do; # yields sequence in triangular form - Emeric Deutsch, Jan 19 2018
  • Mathematica
    nn = 15; a = 1/(1 - y x); f[list_] := Select[list, # > 0 &];Map[f, CoefficientList[Series[ a/(1 - x/(1 - x)), {x, 0, nn}], {x, y}]] // Flatten (* Geoffrey Critzer, Feb 15 2012 *)

Formula

T(j,k) = A011782(j-k), j>=1, k>=1. - Omar E. Pol, Feb 14 2013
T(n,k) = 2^{n-k-1} if kn. - Emeric Deutsch, Jan 12 2018
G.f.: G(t,x) = (1-2*x+t*x^2)/((1-2*x)*(1-t*x)). - Emeric Deutsch, Jan 19 2018

Extensions

New name from Joerg Arndt, May 04 2014

A152570 Triangle T(n,k) read by rows: T(n,n) = -1, T(n,0) = 3^(n - 1), T(n,k) = -3^(n - k - 1), 1 <= k <= n - 1.

Original entry on oeis.org

-1, 1, -1, 3, -1, -1, 9, -3, -1, -1, 27, -9, -3, -1, -1, 81, -27, -9, -3, -1, -1, 243, -81, -27, -9, -3, -1, -1, 729, -243, -81, -27, -9, -3, -1, -1, 2187, -729, -243, -81, -27, -9, -3, -1, -1, 6561, -2187, -729, -243, -81, -27, -9, -3, -1, -1, 19683, -6561, -2187
Offset: 0

Views

Author

Roger L. Bagula, Dec 08 2008

Keywords

Examples

			Triangle begins:
     -1;
      1,    -1;
      3,    -1,    -1;
      9,    -3,    -1,   -1;
     27,    -9,    -3,   -1,   -1;
     81,   -27,    -9,   -3,   -1,  -1;
    243,   -81,   -27,   -9,   -3,  -1,  -1;
    729,  -243,   -81,  -27,   -9,  -3,  -1, -1;
   2187,  -729,  -243,  -81,  -27,  -9,  -3, -1, -1;
   6561, -2187,  -729, -243,  -81, -27,  -9, -3, -1, -1;
  19683, -6561, -2187, -729, -243, -81, -27, -9, -3, -1, -1;
    ...
		

Crossrefs

Row sums (except row 0): A003462.

Programs

  • Mathematica
    b[0] = {-1}; b[1] = {1, -1};
    b[n_] := b[n] = Join[{3^(n - 1)}, {-b[n - 1][[1]]}, Table[b[n - 1][[i]], {i, 2, Length[b[n - 1]]}]];
    Flatten[Table[b[n], {n, 0, 10}]]
  • Maxima
    T(n,k) := if k = n then -1 else if k = 0 then 3^(n - 1) else -3^(n - k - 1)$
    create_list(T(n, k), n, 0, 20, k, 0, n); /* Franck Maminirina Ramaharo, Jan 08 2019 */

Formula

From Franck Maminirina Ramaharo, Jan 08 2019: (Start)
G.f.: -(1 - 4*y + 2*x*y^2)/(1 - (3 + x)*y + 3*x*y^2).
E.g.f.: -(6 - 2*x - (3 - 2*x)*exp(3*y) + (6 - 3*x)*exp(x*y))/(9 - 3*x). (End)

Extensions

Edited by Franck Maminirina Ramaharo, Jan 08 2019

A152572 Triangle T(n,k) read by rows: T(n,n) = -1, T(n,0) = 5^(n - 1), T(n,k) = -5^(n - k - 1), 1 <= k <= n - 1.

Original entry on oeis.org

-1, 1, -1, 5, -1, -1, 25, -5, -1, -1, 125, -25, -5, -1, -1, 625, -125, -25, -5, -1, -1, 3125, -625, -125, -25, -5, -1, -1, 15625, -3125, -625, -125, -25, -5, -1, -1, 78125, -15625, -3125, -625, -125, -25, -5, -1, -1, 390625, -78125, -15625, -3125, -625, -125, -25, -5, -1, -1
Offset: 0

Views

Author

Roger L. Bagula, Dec 08 2008

Keywords

Examples

			Triangle begins:
       -1;
        1,      -1;
        5,      -1,     -1;
       25,      -5,     -1,     -1;
      125,     -25,     -5,     -1,    -1;
      625,    -125,    -25,     -5,    -1,   -1;
     3125,    -625,   -125,    -25,    -5,   -1,   -1;
    15625,   -3125,   -625,   -125,   -25,   -5,   -1,  -1;
    78125,  -15625,  -3125,   -625,  -125,  -25,   -5,  -1, -1;
   390625,  -78125, -15625,  -3125,  -625, -125,  -25,  -5, -1, -1;
  1953125, -390625, -78125, -15625, -3125, -625, -125, -25, -5, -1, -1;
      ...
		

Crossrefs

Row sums (except row 0): A125833.

Programs

  • Mathematica
    b[0] = {-1}; b[1] = {1, -1};
    b[n_] := b[n] = Join[{5^(n - 1)}, {-b[n - 1][[1]]}, Table[b[n - 1][[i]], {i, 2, Length[b[n - 1]]}]];
    Flatten[Table[b[n], {n, 0, 10}]]
  • Maxima
    T(n, k) := if k = n then -1 else if k = 0 then 5^(n - 1) else -5^(n - k - 1);
    create_list(T(n, k), n, 0, 20, k, 0, n); /* Franck Maminirina Ramaharo, Jan 08 2019 */

Formula

From Franck Maminirina Ramaharo, Jan 08 2019: (Start)
G.f.: -(1 - 6*y + 2*x*y^2)/(1 - (5 + x)*y + 5*x*y^2).
E.g.f.: -(10 - 2*x - (5 - 2*x)*exp(5*y) + (20 - 5*x)*exp(x*y))/(25 - 5*x). (End)

Extensions

Edited by Franck Maminirina Ramaharo, Jan 08 2019
Showing 1-7 of 7 results.