A002931
Number of self-avoiding polygons of length 2n on square lattice (not allowing rotations).
Original entry on oeis.org
0, 1, 2, 7, 28, 124, 588, 2938, 15268, 81826, 449572, 2521270, 14385376, 83290424, 488384528, 2895432660, 17332874364, 104653427012, 636737003384, 3900770002646, 24045500114388, 149059814328236, 928782423033008, 5814401613289290, 36556766640745936
Offset: 1
At length 8 there are 7 polygons, consisting of the 2, 1, 4 resp. rotations of:
._. .___. .___.
| | | . | | ._|
| | |___| |_|
|_|
Let p(k,n) be the number of 2k-cycles in the n X n grid graph for n >= k-1. p(k,n) are quadratic polynomials in n, with the first few given by:
p(1,n) = 0,
p(2,n) = 1 - 2*n + n^2,
p(3,n) = 4 - 6*n + 2*n^2,
p(4,n) = 26 - 28*n + 7*n^2,
p(5,n) = 164 - 140*n + 28*n^2,
p(6,n) = 1046 - 740*n + 124*n^2,
p(7,n) = 6672 - 4056*n + 588*n^2,
p(8,n) = 42790 - 22904*n + 2938*n^2,
p(9,n) = 275888 - 132344*n + 15268*n^2,
...
The quadratic coefficients give a(n), so the first few are 0, 1, 2, 7, 28, 124, .... - _Eric W. Weisstein_, Apr 05 2018
- N. Clisby and I. Jensen: A new transfer-matrix algorithm for exact enumerations: self-avoiding polygons on the square lattice, J. Phys. A: Math. Theor. 45 (2012). Also arXiv:1111.5877, 2011. [Extends sequence to a(65)]
- I. G. Enting: Generating functions for enumerating self-avoiding rings on the square lattice, J. Phys. A: Math. Gen. 13 (1980). pp. 3713-3722. See Table 2.
- A. J. Guttmann, Asymptotic analysis of power-series expansions, pp. 1-234 of C. Domb and J. L. Lebowitz, editors, Phase Transitions and Critical Phenomena. Vol. 13, Academic Press, NY, 1989.
- B. D. Hughes, Random Walks and Random Environments, Oxford 1995, vol. 1, p. 461.
- I. Jensen: A parallel algorithm for the enumeration of self-avoiding polygons on the square lattice, J. Phys. A: Math. Gen. 36 (2003). [Extends sequence to a(55)]
- I. Jensen and A. J. Guttmann: Self-avoiding polygons on the square lattice, J. Phys. A: Math. Gen. 32 (1999). Also arXiv:cond-mat/9905291. [Extends sequence to a(45)]
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- N. J. A. Sloane, Table of n, a(n) for n = 1..65 [Formed from tables in several references, the most recent being Clisby-Jensen, 2011/2012]
- Jérôme Bastien, Construction and enumeration of circuits capable of guiding a miniature vehicle, arXiv:1603.08775 [math.CO], 2016. Cites this sequence.
- Nathan Clisby, Lattice enumeration, Slides of talk at Enting fest, CSIRO, Aspendale, 2015; Lattice enumeration [Local copy].
- M. E. Fisher and D. S. Gaunt, Ising model and self-avoiding walks on hypercubical lattices and high density expansions, Phys. Rev. 133 (1964) A224-A239.
- M. E. Fisher and M. F. Sykes, Excluded-volume problem and the Ising model of ferromagnetism, Phys. Rev. 114 (1959), 45-58.
- P. Flajolet and R. Sedgewick, Analytic Combinatorics, 2009; see page 364.
- A. J. Guttmann, Asymptotic analysis of power-series expansions, pp. 1-13, 56-57, 142-143, 150-151 from of C. Domb and J. L. Lebowitz, editors, Phase Transitions and Critical Phenomena. Vol. 13, Academic Press, NY, 1989. (Annotated scanned copy)
- A. J. Guttmann and I. G. Enting, The size and number of rings on the square lattice, J. Phys. A 21 (1988), L165-L172.
- Brian Hayes, How to avoid yourself, American Scientist 86 (1998) 314-319.
- B. J. Hiley and M. F. Sykes, Probability of initial ring closure in the restricted random-walk model of a macromolecule, J. Chem. Phys., 34 (1961), 1531-1537.
- I. Jensen, A parallel algorithm for the enumeration of self-avoiding polygons on the square lattice, Journal of Physics A, Vol. 36 (2003), pp. 5731-5745.
- I. Jensen, More terms
- G. S. Rushbrooke and J. Eve, On Noncrossing Lattice Polygons, Journal of Chemical Physics, 31 (1959), 1333-1334.
- S. G. Whittington and J. P. Valleau, Figure eights on the square lattice: enumeration and Monte Carlo estimation, J. Phys. A 3 (1970), 21-27. See Table 2.
Cf.
A302335 (constant coefficients in p(k,n)).
Cf.
A302336 (linear coefficients in p(k,n)).
A266549
Number of 2n-step 2-dimensional closed self-avoiding paths on square lattice, reduced for symmetry, i.e., where rotations and reflections are not counted as distinct.
Original entry on oeis.org
0, 1, 1, 3, 6, 25, 86, 414, 1975, 10479, 56572, 316577, 1800363, 10419605, 61061169, 361978851
Offset: 1
A131482
a(n) is the number of n-celled polyominoes with perimeter 2n+2.
Original entry on oeis.org
1, 1, 2, 4, 11, 27, 83, 255, 847, 2829, 9734, 33724, 118245, 416816, 1478602, 5267171, 18840144, 67611472, 243378415, 878407170, 3178068821, 11523323634, 41865833602, 152382134767
Offset: 1
A359522 counts only polyominoes with holes.
A002013 counts only unbranched polyominoes.
A038142 is the analog for polyhexes.
A057779
Number of hexagonal polyominoes (or polyhexes, A000228) with perimeter 2n.
Original entry on oeis.org
0, 0, 1, 0, 1, 1, 3, 2, 12, 14, 50, 98, 313, 750, 2308, 6270
Offset: 1
A342243
Triangle T(n,p) read by rows: the number of n-celled polyominoes with perimeter 2p, 2 <= p <= 1+n.
Original entry on oeis.org
1, 0, 1, 0, 0, 2, 0, 0, 1, 4, 0, 0, 0, 1, 11, 0, 0, 0, 1, 7, 27, 0, 0, 0, 0, 4, 21, 83, 0, 0, 0, 0, 2, 21, 91, 255, 0, 0, 0, 0, 1, 9, 89, 339, 847, 0, 0, 0, 0, 0, 6, 67, 393, 1360, 2829, 0, 0, 0, 0, 0, 1, 45, 325, 1713, 5255, 9734, 0, 0, 0, 0, 0, 1, 23, 275
Offset: 1
The triangle has rows n=1,2,3,... and columns p=2,3,4,5,...:
1;
0, 1;
0, 0, 2;
0, 0, 1, 4;
0, 0, 0, 1, 11;
0, 0, 0, 1, 7, 27;
0, 0, 0, 0, 4, 21, 83;
0, 0, 0, 0, 2, 21, 91, 255;
0, 0, 0, 0, 1, 9, 89, 339, 847;
0, 0, 0, 0, 0, 6, 67, 393, 1360, 2829;
0, 0, 0, 0, 0, 1, 45, 325, 1713, 5255, 9734;
...
A131487
a(n) is the number of polyominoes with n edges, including inner edges.
Original entry on oeis.org
0, 0, 0, 1, 0, 0, 1, 0, 0, 2, 0, 1, 4, 0, 1, 11, 1, 7, 27, 4, 21, 85, 21, 92, 264, 89, 345, 914, 394, 1405, 3155, 1736, 5530, 11400, 7586, 22022, 41756, 32702, 87158, 156412, 139253, 346836, 592661, 589101, 1379837, 2275935, 2476770, 5501846, 8830267, 10363627, 21970992, 34594887, 43188260, 87950618
Offset: 1
A single cell has 4 edges; a domino has 7 edges (this includes the edge between the two cells); both trominoes have 10 edges; their possible orientations are not considered distinct. Thus a(4) = a(7) = 1, a(10) = 2, and a(n) = 0 for n < 10 not equal to 4 or 7.
a(22) = 85 = 83 + 2: there are 83 polyominoes with 7 cells and perimeter 16 (such as a 1 X 7 strip) and two polyominoes with 8 cells and perimeter 12 (a 3 X 3 square without a corner and a 4 X 2 rectangle), and each of these polyominoes has 22 edges.
a(23) = 21. a(24) = 91+1. a(25) = 255+9. a(26) = 89. a(27) = 339+6. a(28) = 847+67. a(34) = 9734+1655+11. a(35) = 7412+174. - _R. J. Mathar_, Feb 22 2021
Cf.
A131482 (number of n-celled polyominoes with perimeter 2n+2),
A131488 (analog for hexagonal tiling).
A366443
Number of free polyominoes of site-perimeter n.
Original entry on oeis.org
0, 0, 0, 1, 0, 1, 1, 5, 5, 23, 46, 187, 552, 2145, 7818
Offset: 1
a(4) = a(6) = a(7) = 1 as the monomino, domino and L-shaped tromino are the only polyominoes with site perimeter 4, 6 and 7 respectively.
a(5) = 0 as no polyomino has a site-perimeter of 5.
a(8) = 5 as the straight tromino, square tetromino, T-tetromino, S-tetromino and cross pentomino are the only polyominoes with site perimeter 8. See link "Examples".
Cf.
A000105 (free polyominoes),
A001971 (the maximum size of a polyomino with site-perimeter n is given by
A001971(n-2)),
A057730 (perimeter instead of site-perimeter),
A216820 (fixed version of current sequence).
Column sums of
A338211 (without the column for 0-celled polyominoes).
A216820
Number of polyominoes of site-perimeter n with 8-holes allowed.
Original entry on oeis.org
1, 0, 2, 4, 12, 32, 110, 340, 1209, 4272, 16166, 61848, 246660, 1004883, 4209124, 18020832, 78898047, 352437205, 1605225878, 7445515638, 35142033027, 168644213617, 822311934788, 4071431204506, 20457850555113
Offset: 4
The only polyomino with site-perimeter 4 is a single cell.
No polyominoes have site-perimeter 5.
a(6) = 2: the domino, rotated (or reflected) in 2 possible ways.
a(7) = 4: the L-tromino, rotated in 4 ways.
a(8) = 12: the X-pentomino; the square tetromino; the straight tromino, rotated in 2 ways; the T-tetromino, rotated in 4 ways; the skew tetromino, rotated and reflected in 4 ways.
- A. R. Conway and A. J. Guttmann, On two-dimensional percolation, J. Phys. A: Math. Gen., 28 (1995), 891-904. See Table 2.
- J. Fortier, A. Goupil, J. Lortie and J. Tremblay, Exhaustive generation of gominoes, Theoretical Computer Science, 502 (2013), 76-87. See Table 1, beware of the typo in a(15).
a(15) corrected, a(16)-a(28) from Conway & Guttmann added by
Andrey Zabolotskiy, Feb 02 2022
A057753
Total area of all polyominoes with perimeter 2n.
Original entry on oeis.org
1, 2, 10, 27, 150, 641, 3796, 21525, 134863, 846159, 5464173, 35548106, 234007149, 1551388944, 10361158723
Offset: 2
a(2*n=4) = 1 with area 1: 1*1=1.
a(2*n=6) is 1 with area 2: 1*2=2.
a(2*n=8) is 2 with area 3, 1 with area 4: 2*3+4=10.
a(2*n=10) is 4 with area 4, 1 with area 5, 1 with area 6: 4*4+5+6=27.
a(2*n=12) = 11*5 +7*6 +4*7 +2*8 +1*9 = 150.
a(2*n=14) = 27*6 +21*7 +21*8+ 9*9 + 6*10 +1*11 + 1*12 = 641. - _R. J. Mathar_, Feb 18 2021
a(2*n=16) = 7*83 + 8*91 + 9*89 + 10*67 + 11*45 + 12*23 + 13*11 + 14*4 + 15*2 + 16*1. - _John Mason_, Feb 18 2021
A130622
Number of polyominoes with perimeter at most 2n.
Original entry on oeis.org
0, 1, 2, 5, 11, 36, 122, 538, 2526, 13166, 71153, 400109, 2300430, 13504780, 80547558, 487327904
Offset: 1
Cf.
A131482 (number of n-celled polyominoes with perimeter 2n+2).
Cf.
A130866 (number of polyominoes with at most n cells).
Showing 1-10 of 11 results.
Comments