A108814 Numbers k such that k^4 + 4 is semiprime.
3, 5, 15, 25, 55, 125, 205, 385, 465, 635, 645, 715, 1095, 1145, 1175, 1245, 1275, 1315, 1375, 1565, 1615, 1675, 1685, 1965, 2055, 2085, 2095, 2405, 2455, 2535, 2665, 2835, 2925, 3135, 3305, 3535, 3755, 3775, 4025, 4155, 4175, 4365, 4605, 4615, 4735, 4785
Offset: 1
Keywords
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
- Daniel Shanks, A Note on Gaussian Twin Primes, Mathematics of Computation 14:70 (1960), pp. 201-203.
Programs
-
Magma
IsSemiprime:=func< n | &+[ k[2]: k in Factorization(n) ] eq 2 >; [ n: n in [1..5000] | IsSemiprime(n^4+4)]; // Vincenzo Librandi, Apr 20 2011
-
Mathematica
Select[Range[5000],PrimeOmega[#^4+4]==2&] (* Harvey P. Dale, Sep 07 2017 *)
-
PARI
forstep(n=1,1e5,2,if(isprime(n^2-2*n+2) && isprime(n^2+2*n+2), print1(n", "))) \\ Charles R Greathouse IV, Apr 20 2011
Formula
a(k) = A096012(k) + 1. (Because n^4+4 = ((n-1)^2+1)((n+1)^2+1).) - Jeppe Stig Nielsen, Feb 26 2016
Comments