A058187 Expansion of (1+x)/(1-x^2)^4: duplicated tetrahedral numbers.
1, 1, 4, 4, 10, 10, 20, 20, 35, 35, 56, 56, 84, 84, 120, 120, 165, 165, 220, 220, 286, 286, 364, 364, 455, 455, 560, 560, 680, 680, 816, 816, 969, 969, 1140, 1140, 1330, 1330, 1540, 1540, 1771, 1771, 2024, 2024, 2300, 2300, 2600, 2600, 2925, 2925, 3276, 3276
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..880
- Hansraj Gupta, Enumeration of incongruent cyclic k-gons, Indian J. Pure and Appl. Math., Vol. 10, No. 8 (1979), 964-999.
- Vladimir Shevelev, A problem of enumeration of two-color bracelets with several variations, arXiv:0710.1370 [math.CO], 2007-2011.
- Index entries for linear recurrences with constant coefficients, signature (1,3,-3,-3,3,1,-1).
Crossrefs
Programs
-
Haskell
a058187 n = a058187_list !! n a058187_list = 1 : f 1 1 [1] where f x y zs = z : f (x + y) (1 - y) (z:zs) where z = sum $ zipWith (*) [1..x] [x,x-1..1] -- Reinhard Zumkeller, Dec 21 2011
-
Maple
A058187:= proc(n) option remember; A058187(n):= binomial(floor(n/2)+3, 3) end: seq(A058187(n), n=0..51); # Johannes W. Meijer, May 20 2011
-
Mathematica
a[n_]:= Length @ FindInstance[{x>u, u>v, v>w, w>=0, x+u==n+5}, {x, u, v, w}, Integers, 10^9]; (* Michael Somos, Feb 09 2015 *) With[{tetra=Binomial[Range[30]+2,3]},Riffle[tetra,tetra]] (* Harvey P. Dale, Mar 22 2015 *)
-
PARI
{a(n) = binomial(n\2+3, 3)}; /* Michael Somos, Jun 07 2005 */
-
Sage
[binomial((n//2)+3, 3) for n in (0..60)] # G. C. Greubel, Feb 18 2022
Formula
a(n) = A006918(n+1) - a(n-1).
a(2*n) = a(2*n+1) = A000292(n) = (n+1)*(n+2)*(n+3)/6.
a(n) = (2*n^3 + 21*n^2 + 67*n + 63)/96 + (n^2 + 7*n + 11)(-1)^n/32. - Paul Barry, Aug 19 2003
a(n) = A108299(n-3,n)*(-1)^floor(n/2) for n > 2. - Reinhard Zumkeller, Jun 01 2005
Euler transform of finite sequence [1, 3]. - Michael Somos, Jun 07 2005
G.f.: 1 / ((1 - x) * (1 - x^2)^3) = 1 / ((1 + x)^3 * (1 - x)^4). a(n) = -a(-7-n) for all n in Z.
a(n) = binomial(floor(n/2) + 3, 3). - Vladimir Shevelev, May 03 2011
Sum_{n>=0} 1/a(n) = 3. - Amiram Eldar, Aug 18 2022
Comments