cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A058562 Another 3-way generalization of series-parallel networks with n labeled edges.

Original entry on oeis.org

0, 1, 3, 21, 243, 3933, 81819, 2080053, 62490339, 2166106509, 85092601707, 3735939709989, 181287330220467, 9634718677393917, 556569415611455931, 34723276781195740437, 2326773811332029313411, 166666995789875216053101, 12708546598923724476443403
Offset: 0

Views

Author

N. J. A. Sloane, Dec 26 2000

Keywords

Crossrefs

Programs

  • Maple
    spec := [ N, {N=Union(Z,S,P,Q), S=Set(Union(Z,P,Q),card>=2), P=Set(Union(Z,S,Q),card>=2), Q=Set(Union(Z,S,P),card>=2)}, labeled ]; [seq(combstruct[count](spec,size=n), n=0..40)]; # N=A058562, S=A058575
    # Alternatively:
    A058562_list := proc(len) local A, n; A[0] := 0; A[1] := 1; for n from 2 to len do
    A[n] := A[n-1] + add(binomial(n,j)*A[j]*A[n-j], j=1..n-1) od:
    convert(A,list) end: A058562_list(18); # Peter Luschny, May 24 2017
  • Mathematica
    a[n_] := Sum[(n+k-1)!*Sum[1/(k-j)!*Sum[(3^(j-l)*(2)^l*(-1)^(l+j)* StirlingS1[n-l+j-1, j-l])/(l!*(n-l+j-1)!), {l, 0, j}], {j, 0, k}], {k, 0, n-1}]; Table[a[n], {n, 0, 17}] (* Jean-François Alcover, Feb 26 2013, after Vladimir Kruchinin *)
  • Maxima
    a(n):=sum((n+k-1)!*sum(1/(k-j)!*sum((3^(j-l)*(2)^l*(-1)^(l+j)*stirling1(n-l+j-1,j-l))/(l!*(n-l+j-1)!),l,0,j),j,0,k),k,0,n-1); /* Vladimir Kruchinin, Sep 26 2012 */
  • PARI
    {a(n)=if(n<1,0,n!*polcoeff(serreverse(3*log(1+x+x*O(x^n))-2*x),n))} \\ Paul D. Hanna, Aug 03 2008
    

Formula

E.g.f.: -3/2*LambertW(-2/3*exp(-2/3+1/3*x))-1. - Vladeta Jovovic, Jun 25 2007
E.g.f.: A(x) = Series_Reversion[ 3*log(1+x) - 2*x ]. [Paul D. Hanna, Aug 03 2008]
Let f(x) = (1+x)/(1-2*x). Let D be the operator g(x) -> d/dx(f(x)*g(x)). Then for n>=1, a(n) = D^(n-1)(1) evaluated at x = 0. - Peter Bala, Sep 05 2011
log(1 + A(x)) = x + 2*x^2/2! + 14*x^3/3! + 162*x^4/4! + ... is the e.g.f. for A201465. - Peter Bala, Jul 12 2012
a(n) = sum(k=0..n-1, (n+k-1)!*sum(j=0..k, 1/(k-j)!*sum(l=0..j, (3^(j-l)*(2)^l*(-1)^(l+j)*stirling1(n-l+j-1,j-l))/(l!*(n-l+j-1)!)))). [Vladimir Kruchinin, Sep 26 2012]
G.f.: x/Q(0), where Q(k)= 1 - (k+1)*x - 2*x*(k+1)/Q(k+1); (continued fraction). - Sergei N. Gladkovskii, May 01 2013
a(n) ~ sqrt(3) * n^(n-1) / (2*exp(n) * (log(27/8)-1)^(n-1/2)). - Vaclav Kotesovec, Oct 05 2013
a(n) = a(n-1) + Sum_{j=1..n-1} binomial(n,j)*a(j)*a(n-j) for n>1. - Peter Luschny, May 24 2017

A058540 Another 3-way generalization of series-parallel networks with n unlabeled edges.

Original entry on oeis.org

0, 1, 3, 9, 36, 144, 651, 3015, 14634, 72654, 369063, 1904985, 9971889, 52788393, 282161025, 1520597895, 8253281871, 45075359277, 247534382298, 1365994896264, 7571065357620, 42127865408028, 235246997219400, 1317894484506336
Offset: 0

Views

Author

N. J. A. Sloane, Dec 24 2000

Keywords

Comments

Compare the combstruct construction here with those for A000084 and A058534.

Crossrefs

Programs

  • Maple
    spec := [ N, {N=Union(Z,S,P,Q), S=Set(Union(Z,P,Q),card>=2), P=Set(Union(Z,S,Q),card>=2), Q=Set(Union(Z,S,P),card>=2)} ]; [seq(combstruct[count](spec,size=n), n=0..40)]; # N=A058540, S=A058371
Showing 1-2 of 2 results.