Original entry on oeis.org
0, 0, 1, 3, 12, 48, 217, 1005, 4878, 24218, 123021, 634995, 3323963, 17596131, 94053675, 506865965, 2751093957, 15025119759, 82511460766, 455331632088, 2523688452540, 14042621802676, 78415665739800, 439298161502112, 2468288819015277
Offset: 0
-
spec := [ S, {N=Union(Z,S,P,Q), S=Set(Union(Z,P,Q),card>=2), P=Set(Union(Z,S,Q),card>=2), Q=Set(Union(Z,S,P),card>=2)} ]; [seq(combstruct[count](spec,size=n), n=0..40)]; # N=A058540, S=A058371
spec:=[S,{S=Set(Union(Z,S,S),card>=2)}];[seq(combstruct[count](spec,size=n),n=0..25)]; # Vladeta Jovovic, Jun 25 2007
A058562
Another 3-way generalization of series-parallel networks with n labeled edges.
Original entry on oeis.org
0, 1, 3, 21, 243, 3933, 81819, 2080053, 62490339, 2166106509, 85092601707, 3735939709989, 181287330220467, 9634718677393917, 556569415611455931, 34723276781195740437, 2326773811332029313411, 166666995789875216053101, 12708546598923724476443403
Offset: 0
-
spec := [ N, {N=Union(Z,S,P,Q), S=Set(Union(Z,P,Q),card>=2), P=Set(Union(Z,S,Q),card>=2), Q=Set(Union(Z,S,P),card>=2)}, labeled ]; [seq(combstruct[count](spec,size=n), n=0..40)]; # N=A058562, S=A058575
# Alternatively:
A058562_list := proc(len) local A, n; A[0] := 0; A[1] := 1; for n from 2 to len do
A[n] := A[n-1] + add(binomial(n,j)*A[j]*A[n-j], j=1..n-1) od:
convert(A,list) end: A058562_list(18); # Peter Luschny, May 24 2017
-
a[n_] := Sum[(n+k-1)!*Sum[1/(k-j)!*Sum[(3^(j-l)*(2)^l*(-1)^(l+j)* StirlingS1[n-l+j-1, j-l])/(l!*(n-l+j-1)!), {l, 0, j}], {j, 0, k}], {k, 0, n-1}]; Table[a[n], {n, 0, 17}] (* Jean-François Alcover, Feb 26 2013, after Vladimir Kruchinin *)
-
a(n):=sum((n+k-1)!*sum(1/(k-j)!*sum((3^(j-l)*(2)^l*(-1)^(l+j)*stirling1(n-l+j-1,j-l))/(l!*(n-l+j-1)!),l,0,j),j,0,k),k,0,n-1); /* Vladimir Kruchinin, Sep 26 2012 */
-
{a(n)=if(n<1,0,n!*polcoeff(serreverse(3*log(1+x+x*O(x^n))-2*x),n))} \\ Paul D. Hanna, Aug 03 2008
A058534
A 3-way generalization of series-parallel networks with n unlabeled edges.
Original entry on oeis.org
0, 1, 3, 6, 15, 36, 99, 270, 783, 2298, 6936, 21204, 65895, 206862, 656253, 2098602, 6761028, 21917364, 71450229, 234070806, 770216253, 2544458592, 8435990916, 28060099692, 93612265143, 313153860210, 1050194570445, 3530080085868
Offset: 0
-
spec := [ N, {N=Union(Z,S,P,Q), S=Set(Union(Z,P),card>=2), P=Set(Union(Z,Q),card>=2), Q=Set(Union(Z,S),card>=2)} ]; [seq(combstruct[count](spec,size=n), n=0..40)]; # N = A058534, S=A000669
Showing 1-3 of 3 results.
Comments