cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A058575 The sequence S defined in A058562.

Original entry on oeis.org

0, 0, 1, 7, 81, 1311, 27273, 693351, 20830113, 722035503, 28364200569, 1245313236663, 60429110073489, 3211572892464639, 185523138537151977, 11574425593731913479, 775591270444009771137, 55555665263291738684367, 4236182199641241492147801
Offset: 0

Views

Author

N. J. A. Sloane, Dec 26 2000

Keywords

Crossrefs

Cf. A058562.

Programs

  • Maple
    spec := [ S, {N=Union(Z,S,P,Q), S=Set(Union(Z,P,Q),card>=2), P=Set(Union(Z,S,Q),card>=2), Q=Set(Union(Z,S,P),card>=2)}, labeled ]; [seq(combstruct[count](spec,size=n), n=0..40)]; # N=A058562, S=A058575
    spec:=[S,{S=Set(Union(Z,S,S),card>=2)},labeled];[seq(combstruct[count](spec,size=n),n=0..20)]; # Vladeta Jovovic, Jun 25 2007
  • Mathematica
    max = 18; se = Series[ -1/2*ProductLog[ -2/3*Exp[-2/3 + 1/3*x]] - 1/3 - x/3 , {x, 0, max}]; Join[{0, 0}, (CoefficientList[se, x] // DeleteCases[#, 0] &) ]* Range[0, max]! (* Jean-François Alcover, Jun 24 2013, after Vladeta Jovovic *)

Formula

E.g.f.: -(1/2)*LambertW(-2/3*exp(-2/3 + 1/3*x)) - 1/3 - x/3. - Vladeta Jovovic, Jun 25 2007
a(n) ~ sqrt(log(3/2)-1/3) * n^(n-1) / (2 * exp(n) * (log(27/8)-1)^n). - Vaclav Kotesovec, Jul 09 2013

A234294 E.g.f. satisfies: A(x) = 1 + A(x)^4 * Integral 1/A(x)^4 dx.

Original entry on oeis.org

1, 1, 4, 40, 664, 15424, 460576, 16808320, 724904896, 36072438016, 2034328297984, 128223244372480, 8932539799788544, 681536817951791104, 56521548341146402816, 5062454448656689500160, 487013865350356256137216, 50082306316236214342844416, 5482502331779770770018893824
Offset: 0

Views

Author

Paul D. Hanna, Dec 24 2013

Keywords

Examples

			E.g.f.: A(x) = 1 + x + 4*x^2/2! + 40*x^3/3! + 664*x^4/4! + 15424*x^5/5! +...
where A(4*log(1+x) - 3*x) = 1+x.
Related series:
A(x)^4 = 1 + 4*x + 28*x^2/2! + 328*x^3/3! + 5752*x^4/4! + 137056*x^5/5! +...
1/A(x)^4 = 1 - 4*x + 4*x^2/2! - 40*x^3/3! - 536*x^4/4! - 13216*x^5/5! +...
(d/dx Series_Reversion(Integral 1/A(x)^4 dx))^(1/4) begins:
G(x) = 1 + x + 4*x^2 + 22*x^3 + 140*x^4 + 969*x^5 +...+ A002293(n)*x^n +...
where G(x) = 1 + x*G(x)^4.
		

Crossrefs

Programs

  • Mathematica
    CoefficientList[1 + InverseSeries[Series[4*Log[1+x]-3*x, {x, 0, 20}], x],x]* Range[0, 20]! (* Vaclav Kotesovec, Dec 26 2013 *)
  • PARI
    {a(n)=local(A=1+x); for(i=1, n, A=1+A^4*intformal(1/(A^4+x*O(x^n)))); n!*polcoeff(A, n)}
    for(n=0, 25, print1(a(n), ", "))
    
  • PARI
    {a(n)=local(A=1, X=x+x^2*O(x^n)); A=1+serreverse(4*log(1+X) - 3*X); n!*polcoeff(A, n)}
    for(n=0, 25, print1(a(n), ", "))
    
  • PARI
    /* O.g.f. continued fraction: */
    {a(n)=local(CF=1+x*O(x)); for(k=0, n, CF=1-(n-k+1)*x-3*(n-k+1)*x/CF); polcoeff(1+x/CF, n, x)}
    for(n=0, 25, print1(a(n), ", "))

Formula

E.g.f.: 1 + Series_Reversion( 4*log(1+x) - 3*x ).
E.g.f.: -4/3*LambertW(-3/4*exp((x-3)/4)).
E.g.f.: 1 / ( d/dx Series_Reversion( Integral G(x)^4 dx ) )^(1/4), where G(x) = 1 + x*G(x)^4 is the g.f. of A002293.
E.g.f.: 1 / sqrt( d/dx Series_Reversion( Integral (1+2*x*C(2*x))^2/(1+x)^2 dx ) ), where C(x) = 1 + x*C(x)^2 = (1 - sqrt(1-4*x))/(2*x), is the Catalan function of A000108.
O.g.f.: 1 + x/(1-x - 3*x/(1-2*x - 3*2*x/(1-3*x - 3*3*x/(1-4*x - 3*4*x/(1-...))))), a continued fraction.
a(n) ~ 2 * n^(n-1) / (3 * exp(n) * (8*log(2)-4*log(3)-1)^(n-1/2)). - Vaclav Kotesovec, Dec 26 2013

A095839 a(n) = ((2*n)!/(n!*2^(n-1)))*Integral_{x=1/2..1} (sqrt(1-x^2)/x)^(2*n) dx.

Original entry on oeis.org

1, 1, 5, 51, 807, 17445, 479565, 16019955, 630301455, 28552506885, 1463744449125, 83780913568275, 5296205435649975, 366478026602012325, 27552067849812030525, 2236327624673777509875, 194908916445067162713375, 18154937081288124469477125
Offset: 0

Views

Author

Al Hakanson (Hawkuu(AT)excite.com), Jun 08 2004

Keywords

Comments

From Paul Hanna, Dec 22 2013: (Start)
E.g.f. satisfies: A(x) = 1 + A(x)^3 * Integral 1/A(x) dx. Compare to: G(x) = 1 + G(x)^3 * Integral 1/G(x)^3 dx, where G(x)-1 is the e.g.f. of A058562, the number of 3-way series-parallel networks with n labeled edges.
A(x)^3 = 1 + 3*x + 21*x^2/2! + 249*x^3/3! + 4275*x^4/4! + 97155*x^5/5! +...
Integral 1/A(x) dx = x - x^2/2! - 3*x^3/3! - 27*x^4/4! - 405*x^5/5! - 8505*x^6/6! +...
Series_Reversion(Integral 1/A(x) dx) = x + x^2/2 + 3*x^3/3 + 12*x^4/4 + 55*x^5/5 + 273*x^6/6 + 1428*x^7/7 +...+ A001764(n-1)*x^n/n +...
E.g.f.: 1 + Series_Reversion( (x - x^2/2) / (1+x)^2 ). (End)

Crossrefs

Programs

  • Maple
    A095839 := proc(n)
        local k;
        (4^k-2)/2/(2*k-1) ;
        add(%*(-1)^k*binomial(n,k),k=0..n) ;
        %*(-1)^n*(2*n)!/n!/2^(n-1) ;
    end proc: # R. J. Mathar, Feb 13 2014
  • Mathematica
    f[n_] := Numerator[ Integrate[(Sqrt[1 - x^2]/x)^(2n), {x, 1/2, 1}]*(2n)!/(n!2^(n + 1)!)]; Table[ f[n], {n, 0, 11}] (* Robert G. Wilson v *)
    f[n_] := Numerator[2^(-2 - Gamma[2 + n])*3^(1 + n)*(2*n)!* Hypergeometric2F1Regularized[1, 1/2 + n, 2 + n, -3]]; Table[f[n], {n, 0, 11}] (* Eric W. Weisstein, Nov 19 2005 *)
  • PARI
    {a(n)=local(A=(2-sqrt(1-6*x+x^2*O(x^n)))/(1+2*x)); n!*polcoeff(A, n)}
    for(n=0, 25, print1(a(n), ", ")) \\ Paul D. Hanna, Dec 22 2013

Formula

D-finite with a(n) +(-4*n+9)*a(n-1) -6*(n-1)*(2*n-3)*a(n-2)=0. - R. J. Mathar, Feb 13 2014
E.g.f.: (2-sqrt(1-6*x))/(1+2*x). Recurrence follows from the d.e. (12*x^2+4*x-1)*y''+(30*x-1)*y'+6*y=0 satisfied by this. - Robert Israel, May 08 2018
a(n) ~ 2^(n-5/2) * 3^(n+1) * n^(n-1) / exp(n). - Vaclav Kotesovec, Dec 27 2013

Extensions

a(8)-a(11) from Robert G. Wilson v, Nov 18 2005
Definition corrected by Robert Israel, May 08 2018

A201465 E.g.f. satisfies: A(x) = (x + 2*exp(A(x)) - 2)/3.

Original entry on oeis.org

1, 2, 14, 162, 2622, 54546, 1386702, 41660226, 1444071006, 56728401138, 2490626473326, 120858220146978, 6423145784929278, 371046277074303954, 23148851187463826958, 1551182540888019542274, 111111330526583477368734, 8472364399282482984295602, 685178683361064789536947374
Offset: 1

Views

Author

Paul D. Hanna, Dec 01 2011

Keywords

Examples

			E.g.f.: A(x) = x + 2*x^2 + 14*x^3/3! + 162*x^4/4! + 2622*x^5/5! + 54546*x^6/6! +...
The exponential of the e.g.f. begins:
exp(A(x)) = 1 + x + 3*x^2/2! + 21*x^3/3! + 243*x^4/4! + 3933*x^5/5! + 81819*x^6/6! +...
where x = 2 + 3*A(x) - 2*exp(A(x)).
...
O.g.f.: G(x) = 1 + 2*x + 14*x^2 + 162*x^3 + 2622*x^4 + 54546*x^5 +...
where
G(x) = 1/3 + 2/(3*(3-x)) + 2^2/(3*(3-x)*(3-2*x)) + 2^3/(3*(3-x)*(3-2*x)*(3-3*x)) + 2^4/(3*(3-x)*(3-2*x)*(3-3*x)*(3-4*x)) + 2^5/(3*(3-x)*(3-2*x)*(3-3*x)*(3-4*x)*(3-5*x)) +...
		

Crossrefs

Cf. variants: A000311, A201466. A058562.

Programs

  • Mathematica
    Rest[CoefficientList[1 + InverseSeries[Series[2 + 3*x - 2*Exp[x], {x, 0, 20}], x],x]* Range[0, 20]!] (* Vaclav Kotesovec, Dec 26 2013 *)
  • Maxima
    a(n):=(sum((n+k-1)!*sum(1/(k-j)!*sum((3^i*(-1)^(i)*2^(j-i)*stirling2(n+j-i-1,j-i))/(i!*(n+j-i-1)!),i,0,j),j,0,k),k,0,n-1)); /* Vladimir Kruchinin, Feb 04 2012 */
  • PARI
    {a(n)=n!*polcoeff(serreverse(2+3*x - 2*exp(x+x^2*O(x^n))),n)}
    for(n=0, 25, print1(round(A[n+1]), ", "))
    
  • PARI
    \p100 \\ set precision
    {A=Vec(sum(n=0, 600, 1.*2^n/prod(k=0, n, 3 - k*x + O(x^31))))}
    for(n=0, 25, print1(round(A[n+1]), ", ")) \\ Paul D. Hanna, Oct 27 2014
    

Formula

E.g.f. A(x) satisfies: x = A( 2 + 3*x - 2*exp(x) ).
a(n)=(sum(k=0..n-1, (n+k-1)!*sum(j=0..k, 1/(k-j)!*sum(i=0..j, (3^i*(-1)^(i)*2^(j-i)*stirling2(n+j-i-1,j-i))/(i!*(n+j-i-1)!))))), n>0. [From Vladimir Kruchinin, Feb 04 2012]
exp(A(x))-1 is the compositional inverse of 3*log(1+x)-2*x and is the e.g.f. of A058562. - Peter Bala, Jul 12 2012
G.f.: 1/Q(0), where Q(k)= 1 - k*x - 2*x*(k+1)/Q(k+1); (continued fraction). - Sergei N. Gladkovskii, May 01 2013
E.g.f.: (x-2)/3 - LambertW(-2/3*exp((x-2)/3)). - Vaclav Kotesovec, Dec 26 2013
a(n) ~ n^(n-1) / (sqrt(3) * exp(n) * (3*log(3)-3*log(2)-1)^(n-1/2)). - Vaclav Kotesovec, Dec 26 2013
O.g.f.: Sum_{n>=0} 2^n / Product_{k=0..n} (3 - k*x). - Paul D. Hanna, Oct 27 2014

A234290 Duplicate of A095839.

Original entry on oeis.org

1, 1, 5, 51, 807, 17445, 479565, 16019955, 630301455, 28552506885, 1463744449125, 83780913568275, 5296205435649975, 366478026602012325, 27552067849812030525, 2236327624673777509875, 194908916445067162713375, 18154937081288124469477125, 1799824448875247911270279125
Offset: 0

Views

Author

Paul D. Hanna, Dec 22 2013

Keywords

Comments

Compare to: G(x) = 1 + G(x)^3 * Integral 1/G(x)^3 dx, where G(x)-1 is the e.g.f. of A058562, the number of 3-way series-parallel networks with n labeled edges.
Is this sequence the same as A095839?

Examples

			E.g.f.: A(x) = 1 + x + 5*x^2/2! + 51*x^3/3! + 807*x^4/4! + 17445*x^5/5! +...
where A(x)^3 = 1 + 3*x + 21*x^2/2! + 249*x^3/3! + 4275*x^4/4! + 97155*x^5/5! +...
Integral 1/A(x) dx = x - x^2/2! - 3*x^3/3! - 27*x^4/4! - 405*x^5/5! - 8505*x^6/6! +...
Further,
Series_Reversion(Integral 1/A(x) dx) = x + x^2/2 + 3*x^3/3 + 12*x^4/4 + 55*x^5/5 + 273*x^6/6 + 1428*x^7/7 +...+ A001764(n-1)*x^n/n +...
where A001764(n) = binomial(3*n,n)/(2*n+1).
		

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[(2-Sqrt[1-6*x])/(1+2*x), {x, 0, 20}], x]* Range[0, 20]! (* Vaclav Kotesovec, Dec 27 2013 *)
  • PARI
    {a(n)=local(A=1+x);for(i=1,n,A=1+A^3*intformal(1/(A+x*O(x^n))));n!*polcoeff(A,n)}
    for(n=0,25,print1(a(n),", "))
    
  • PARI
    /* From formula using g.f. of A001764 G(x) = 1 + x*G(x)^3: */
    {a(n)=local(G=sum(m=0,n,binomial(3*m,m)/(2*m+1)*x^m)+x*O(x^n),A=1);A=1/deriv(serreverse(intformal(G))); n!*polcoeff(A, n)}
    for(n=0, 25, print1(a(n), ", "))
    
  • PARI
    /* Explicit formula: 1/(1 - x*C(3*x/2)), C(x) = 1 + x*C(x)^2 */
    {a(n)=local(A=(2-sqrt(1-6*x+x^2*O(x^n)))/(1+2*x)); n!*polcoeff(A, n)}
    for(n=0, 25, print1(a(n), ", "))
    
  • PARI
    /* From formula: 1 + Series_Reversion((x - x^2/2)/(1+x)^2): */
    {a(n)=local(A=1,X=x+x^2*O(x^n));A=1+serreverse((X-X^2/2)/(1+X)^2); n!*polcoeff(A, n)}
    for(n=0, 25, print1(a(n), ", "))

Formula

E.g.f.: 1 / ( d/dx Series_Reversion( Integral G(x) dx ) ) where G(x) = 1 + x*G(x)^3 = Sum_{n>=0} A001764(n)*x^n is the g.f. of A001764.
E.g.f.: (2 - sqrt(1-6*x)) / (1+2*x) = 1/(1 - x*C(3*x/2)), where C(x) = 1 + x*C(x)^2 = (1 - sqrt(1-4*x))/(2*x) is the g.f. of the Catalan numbers (A000108).
E.g.f.: 1 + Series_Reversion( (x - x^2/2) / (1+x)^2 ).
a(n) ~ 2^(n-5/2) * 3^(n+1) * n^(n-1) / exp(n). - Vaclav Kotesovec, Dec 27 2013
D-finite with recurrence a(n) +(-4*n+9)*a(n-1) -6*(n-1)*(2*n-3)*a(n-2)=0. - R. J. Mathar, Nov 22 2024

A234291 E.g.f. satisfies: A(x) = 1 + A(x)^3 * Integral 1/A(x)^2 dx.

Original entry on oeis.org

1, 1, 4, 34, 460, 8608, 206152, 6020992, 207574240, 8251015264, 371527296256, 18691127602816, 1039066330203520, 63253339835514112, 4184830238170091008, 298985971407749744128, 22941517126450315985920, 1881603821848104123344896, 164271703613261014954276864
Offset: 0

Views

Author

Paul D. Hanna, Dec 22 2013

Keywords

Comments

Compare to: G(x) = 1 + G(x)^3 * Integral 1/G(x)^3 dx, where G(x)-1 is the e.g.f. of A058562, the number of 3-way series-parallel networks with n labeled edges.

Examples

			E.g.f.: A(x) = 1 + x + 4*x^2/2! + 34*x^3/3! + 460*x^4/4! + 8608*x^5/5! +...
where A(x)^3 = 1 + 3*x + 18*x^2/2! + 180*x^3/3! + 2628*x^4/4! + 51264*x^5/5! +...
Integral 1/A(x)^2 dx = x - 2*x^2/2! - 2*x^3/3! - 20*x^4/4! - 272*x^5/5! - 5096*x^6/6! +...
Further,
Series_Reversion(Integral 1/A(x)^2 dx) = x + 2*x^2/2 + 7*x^3/3 + 30*x^4/4 + 143*x^5/5 + 728*x^6/6 + 3876*x^7/7 +...+ A006013(n-1)*x^n/n +...
where A006013(n) = binomial(3*n+1,n)/(n+1).
		

Crossrefs

Programs

  • Maple
    seq(n! * coeff(series(-3/(2*LambertW(-1,-3/2*exp((x-3)/2))), x, n+1), x, n), n = 0..10) # Vaclav Kotesovec, Dec 27 2013
  • Mathematica
    CoefficientList[1 + InverseSeries[Series[3*x/(1+x) - 2*Log[1+x], {x, 0, 20}], x],x]* Range[0, 20]! (* Vaclav Kotesovec, Dec 27 2013 *)
  • PARI
    {a(n)=local(A=1+x); for(i=1, n, A=1+A^3*intformal(1/(A^2+x*O(x^n)))); n!*polcoeff(A, n)}
    for(n=0, 25, print1(a(n), ", "))
    
  • PARI
    /* Explicit formula using g.f. of A001764, G(x) = 1 + x*G(x)^3: */
    {a(n)=local(G=sum(m=0, n, binomial(3*m, m)/(2*m+1)*x^m)+x*O(x^n), A=1); A=1/sqrt(deriv(serreverse(intformal(G^2)))); n!*polcoeff(A, n)}
    for(n=0, 25, print1(a(n), ", "))
    
  • PARI
    /* Explicit formula: 1 + Series_Reversion(3*x/(1+x) - 2*log(1+x)): */
    {a(n)=local(A=1, X=x+x^2*O(x^n)); A=1+serreverse(3*X/(1+X)-2*log(1+X)); n!*polcoeff(A, n)}
    for(n=0, 25, print1(a(n), ", "))

Formula

E.g.f.: 1 / sqrt( d/dx Series_Reversion( Integral G(x)^2 dx ) ) where G(x) = 1 + x*G(x)^3 is the g.f. of A001764, and G(x)^2 is the g.f. of A006013.
E.g.f.: 1 + Series_Reversion( 3*x/(1+x) - 2*log(1+x) ).
E.g.f.: -3/(2*LambertW(-1,-3/2*exp((x-3)/2))). - Vaclav Kotesovec, Dec 27 2013
a(n) ~ 3*sqrt(2) * n^(n-1) / (4*exp(n) * (1+2*log(2)-2*log(3))^(n-1/2)). - Vaclav Kotesovec, Dec 27 2013

A234295 E.g.f. satisfies: A(x) = 1 + A(x)^5 * Integral 1/A(x)^5 dx.

Original entry on oeis.org

1, 1, 5, 65, 1405, 42505, 1653125, 78578225, 4414067725, 286099718425, 21015972365525, 1725374840578625, 156560122048892125, 15559151967183795625, 1680744724811088153125, 196083244062052339084625, 24570430118524659881918125, 3291153805391398126661325625
Offset: 0

Views

Author

Paul D. Hanna, Dec 25 2013

Keywords

Examples

			E.g.f.: A(x) = 1 + x + 5*x^2/2! + 65*x^3/3! + 1405*x^4/4! + 42505*x^5/5! +...
where A(5*log(1+x) - 4*x) = 1+x.
Related series:
A(x)^5 = 1 + 5*x + 45*x^2/2! + 685*x^3/3! + 15645*x^4/4! + 485645*x^5/5! +...
1/A(x)^5 = 1 - 5*x + 5*x^2/2! - 85*x^3/3! - 1595*x^4/4! - 50645*x^5/5! +...
(d/dx Series_Reversion(Integral 1/A(x)^5 dx))^(1/5) begins:
G(x) = 1 + x + 5*x^2 + 35*x^3 + 285*x^4 + 2530*x^5 +...+ A002294(n)*x^n +...
where G(x) = 1 + x*G(x)^5.
		

Crossrefs

Programs

  • Mathematica
    CoefficientList[1 + InverseSeries[Series[5*Log[1+x]-4*x, {x, 0, 20}], x],x]* Range[0, 20]! (* Vaclav Kotesovec, Dec 26 2013 *)
  • PARI
    {a(n)=local(A=1+x); for(i=1, n, A=1+A^5*intformal(1/(A^5+x*O(x^n)))); n!*polcoeff(A, n)}
    for(n=0, 25, print1(a(n), ", "))
    
  • PARI
    {a(n)=local(A=1,X=x+x^2*O(x^n)); A=1+serreverse(5*log(1+X) - 4*X); n!*polcoeff(A, n)}
    for(n=0, 25, print1(a(n), ", "))
    
  • PARI
    /* O.g.f. continued fraction: */
    {a(n)=local(CF=1+x*O(x)); for(k=0, n, CF=1-(n-k+1)*x-4*(n-k+1)*x/CF); polcoeff(1+x/CF, n, x)}
    for(n=0, 25, print1(a(n), ", "))

Formula

E.g.f.: 1 + Series_Reversion( 5*log(1+x) - 4*x ).
E.g.f.: -5/4*LambertW(-4/5*exp((x-4)/5)).
E.g.f.: 1 / ( d/dx Series_Reversion( Integral G(x)^5 dx ) )^(1/5), where G(x) = 1 + x*G(x)^5 is the g.f. of A002294.
O.g.f.: 1 + x/(1-x - 4*x/(1-2*x - 4*2*x/(1-3*x - 4*3*x/(1-4*x - 4*4*x/(1-...))))), a continued fraction.
a(n) ~ sqrt(5) * n^(n-1) / (4*exp(n)*(5*log(5)-10*log(2)-1)^(n-1/2)). - Vaclav Kotesovec, Dec 26 2013
Showing 1-7 of 7 results.