Original entry on oeis.org
0, 0, 1, 7, 81, 1311, 27273, 693351, 20830113, 722035503, 28364200569, 1245313236663, 60429110073489, 3211572892464639, 185523138537151977, 11574425593731913479, 775591270444009771137, 55555665263291738684367, 4236182199641241492147801
Offset: 0
-
spec := [ S, {N=Union(Z,S,P,Q), S=Set(Union(Z,P,Q),card>=2), P=Set(Union(Z,S,Q),card>=2), Q=Set(Union(Z,S,P),card>=2)}, labeled ]; [seq(combstruct[count](spec,size=n), n=0..40)]; # N=A058562, S=A058575
spec:=[S,{S=Set(Union(Z,S,S),card>=2)},labeled];[seq(combstruct[count](spec,size=n),n=0..20)]; # Vladeta Jovovic, Jun 25 2007
-
max = 18; se = Series[ -1/2*ProductLog[ -2/3*Exp[-2/3 + 1/3*x]] - 1/3 - x/3 , {x, 0, max}]; Join[{0, 0}, (CoefficientList[se, x] // DeleteCases[#, 0] &) ]* Range[0, max]! (* Jean-François Alcover, Jun 24 2013, after Vladeta Jovovic *)
A234294
E.g.f. satisfies: A(x) = 1 + A(x)^4 * Integral 1/A(x)^4 dx.
Original entry on oeis.org
1, 1, 4, 40, 664, 15424, 460576, 16808320, 724904896, 36072438016, 2034328297984, 128223244372480, 8932539799788544, 681536817951791104, 56521548341146402816, 5062454448656689500160, 487013865350356256137216, 50082306316236214342844416, 5482502331779770770018893824
Offset: 0
E.g.f.: A(x) = 1 + x + 4*x^2/2! + 40*x^3/3! + 664*x^4/4! + 15424*x^5/5! +...
where A(4*log(1+x) - 3*x) = 1+x.
Related series:
A(x)^4 = 1 + 4*x + 28*x^2/2! + 328*x^3/3! + 5752*x^4/4! + 137056*x^5/5! +...
1/A(x)^4 = 1 - 4*x + 4*x^2/2! - 40*x^3/3! - 536*x^4/4! - 13216*x^5/5! +...
(d/dx Series_Reversion(Integral 1/A(x)^4 dx))^(1/4) begins:
G(x) = 1 + x + 4*x^2 + 22*x^3 + 140*x^4 + 969*x^5 +...+ A002293(n)*x^n +...
where G(x) = 1 + x*G(x)^4.
-
CoefficientList[1 + InverseSeries[Series[4*Log[1+x]-3*x, {x, 0, 20}], x],x]* Range[0, 20]! (* Vaclav Kotesovec, Dec 26 2013 *)
-
{a(n)=local(A=1+x); for(i=1, n, A=1+A^4*intformal(1/(A^4+x*O(x^n)))); n!*polcoeff(A, n)}
for(n=0, 25, print1(a(n), ", "))
-
{a(n)=local(A=1, X=x+x^2*O(x^n)); A=1+serreverse(4*log(1+X) - 3*X); n!*polcoeff(A, n)}
for(n=0, 25, print1(a(n), ", "))
-
/* O.g.f. continued fraction: */
{a(n)=local(CF=1+x*O(x)); for(k=0, n, CF=1-(n-k+1)*x-3*(n-k+1)*x/CF); polcoeff(1+x/CF, n, x)}
for(n=0, 25, print1(a(n), ", "))
A095839
a(n) = ((2*n)!/(n!*2^(n-1)))*Integral_{x=1/2..1} (sqrt(1-x^2)/x)^(2*n) dx.
Original entry on oeis.org
1, 1, 5, 51, 807, 17445, 479565, 16019955, 630301455, 28552506885, 1463744449125, 83780913568275, 5296205435649975, 366478026602012325, 27552067849812030525, 2236327624673777509875, 194908916445067162713375, 18154937081288124469477125
Offset: 0
Al Hakanson (Hawkuu(AT)excite.com), Jun 08 2004
-
A095839 := proc(n)
local k;
(4^k-2)/2/(2*k-1) ;
add(%*(-1)^k*binomial(n,k),k=0..n) ;
%*(-1)^n*(2*n)!/n!/2^(n-1) ;
end proc: # R. J. Mathar, Feb 13 2014
-
f[n_] := Numerator[ Integrate[(Sqrt[1 - x^2]/x)^(2n), {x, 1/2, 1}]*(2n)!/(n!2^(n + 1)!)]; Table[ f[n], {n, 0, 11}] (* Robert G. Wilson v *)
f[n_] := Numerator[2^(-2 - Gamma[2 + n])*3^(1 + n)*(2*n)!* Hypergeometric2F1Regularized[1, 1/2 + n, 2 + n, -3]]; Table[f[n], {n, 0, 11}] (* Eric W. Weisstein, Nov 19 2005 *)
-
{a(n)=local(A=(2-sqrt(1-6*x+x^2*O(x^n)))/(1+2*x)); n!*polcoeff(A, n)}
for(n=0, 25, print1(a(n), ", ")) \\ Paul D. Hanna, Dec 22 2013
A201465
E.g.f. satisfies: A(x) = (x + 2*exp(A(x)) - 2)/3.
Original entry on oeis.org
1, 2, 14, 162, 2622, 54546, 1386702, 41660226, 1444071006, 56728401138, 2490626473326, 120858220146978, 6423145784929278, 371046277074303954, 23148851187463826958, 1551182540888019542274, 111111330526583477368734, 8472364399282482984295602, 685178683361064789536947374
Offset: 1
E.g.f.: A(x) = x + 2*x^2 + 14*x^3/3! + 162*x^4/4! + 2622*x^5/5! + 54546*x^6/6! +...
The exponential of the e.g.f. begins:
exp(A(x)) = 1 + x + 3*x^2/2! + 21*x^3/3! + 243*x^4/4! + 3933*x^5/5! + 81819*x^6/6! +...
where x = 2 + 3*A(x) - 2*exp(A(x)).
...
O.g.f.: G(x) = 1 + 2*x + 14*x^2 + 162*x^3 + 2622*x^4 + 54546*x^5 +...
where
G(x) = 1/3 + 2/(3*(3-x)) + 2^2/(3*(3-x)*(3-2*x)) + 2^3/(3*(3-x)*(3-2*x)*(3-3*x)) + 2^4/(3*(3-x)*(3-2*x)*(3-3*x)*(3-4*x)) + 2^5/(3*(3-x)*(3-2*x)*(3-3*x)*(3-4*x)*(3-5*x)) +...
-
Rest[CoefficientList[1 + InverseSeries[Series[2 + 3*x - 2*Exp[x], {x, 0, 20}], x],x]* Range[0, 20]!] (* Vaclav Kotesovec, Dec 26 2013 *)
-
a(n):=(sum((n+k-1)!*sum(1/(k-j)!*sum((3^i*(-1)^(i)*2^(j-i)*stirling2(n+j-i-1,j-i))/(i!*(n+j-i-1)!),i,0,j),j,0,k),k,0,n-1)); /* Vladimir Kruchinin, Feb 04 2012 */
-
{a(n)=n!*polcoeff(serreverse(2+3*x - 2*exp(x+x^2*O(x^n))),n)}
for(n=0, 25, print1(round(A[n+1]), ", "))
-
\p100 \\ set precision
{A=Vec(sum(n=0, 600, 1.*2^n/prod(k=0, n, 3 - k*x + O(x^31))))}
for(n=0, 25, print1(round(A[n+1]), ", ")) \\ Paul D. Hanna, Oct 27 2014
Original entry on oeis.org
1, 1, 5, 51, 807, 17445, 479565, 16019955, 630301455, 28552506885, 1463744449125, 83780913568275, 5296205435649975, 366478026602012325, 27552067849812030525, 2236327624673777509875, 194908916445067162713375, 18154937081288124469477125, 1799824448875247911270279125
Offset: 0
E.g.f.: A(x) = 1 + x + 5*x^2/2! + 51*x^3/3! + 807*x^4/4! + 17445*x^5/5! +...
where A(x)^3 = 1 + 3*x + 21*x^2/2! + 249*x^3/3! + 4275*x^4/4! + 97155*x^5/5! +...
Integral 1/A(x) dx = x - x^2/2! - 3*x^3/3! - 27*x^4/4! - 405*x^5/5! - 8505*x^6/6! +...
Further,
Series_Reversion(Integral 1/A(x) dx) = x + x^2/2 + 3*x^3/3 + 12*x^4/4 + 55*x^5/5 + 273*x^6/6 + 1428*x^7/7 +...+ A001764(n-1)*x^n/n +...
where A001764(n) = binomial(3*n,n)/(2*n+1).
-
CoefficientList[Series[(2-Sqrt[1-6*x])/(1+2*x), {x, 0, 20}], x]* Range[0, 20]! (* Vaclav Kotesovec, Dec 27 2013 *)
-
{a(n)=local(A=1+x);for(i=1,n,A=1+A^3*intformal(1/(A+x*O(x^n))));n!*polcoeff(A,n)}
for(n=0,25,print1(a(n),", "))
-
/* From formula using g.f. of A001764 G(x) = 1 + x*G(x)^3: */
{a(n)=local(G=sum(m=0,n,binomial(3*m,m)/(2*m+1)*x^m)+x*O(x^n),A=1);A=1/deriv(serreverse(intformal(G))); n!*polcoeff(A, n)}
for(n=0, 25, print1(a(n), ", "))
-
/* Explicit formula: 1/(1 - x*C(3*x/2)), C(x) = 1 + x*C(x)^2 */
{a(n)=local(A=(2-sqrt(1-6*x+x^2*O(x^n)))/(1+2*x)); n!*polcoeff(A, n)}
for(n=0, 25, print1(a(n), ", "))
-
/* From formula: 1 + Series_Reversion((x - x^2/2)/(1+x)^2): */
{a(n)=local(A=1,X=x+x^2*O(x^n));A=1+serreverse((X-X^2/2)/(1+X)^2); n!*polcoeff(A, n)}
for(n=0, 25, print1(a(n), ", "))
A234291
E.g.f. satisfies: A(x) = 1 + A(x)^3 * Integral 1/A(x)^2 dx.
Original entry on oeis.org
1, 1, 4, 34, 460, 8608, 206152, 6020992, 207574240, 8251015264, 371527296256, 18691127602816, 1039066330203520, 63253339835514112, 4184830238170091008, 298985971407749744128, 22941517126450315985920, 1881603821848104123344896, 164271703613261014954276864
Offset: 0
E.g.f.: A(x) = 1 + x + 4*x^2/2! + 34*x^3/3! + 460*x^4/4! + 8608*x^5/5! +...
where A(x)^3 = 1 + 3*x + 18*x^2/2! + 180*x^3/3! + 2628*x^4/4! + 51264*x^5/5! +...
Integral 1/A(x)^2 dx = x - 2*x^2/2! - 2*x^3/3! - 20*x^4/4! - 272*x^5/5! - 5096*x^6/6! +...
Further,
Series_Reversion(Integral 1/A(x)^2 dx) = x + 2*x^2/2 + 7*x^3/3 + 30*x^4/4 + 143*x^5/5 + 728*x^6/6 + 3876*x^7/7 +...+ A006013(n-1)*x^n/n +...
where A006013(n) = binomial(3*n+1,n)/(n+1).
-
seq(n! * coeff(series(-3/(2*LambertW(-1,-3/2*exp((x-3)/2))), x, n+1), x, n), n = 0..10) # Vaclav Kotesovec, Dec 27 2013
-
CoefficientList[1 + InverseSeries[Series[3*x/(1+x) - 2*Log[1+x], {x, 0, 20}], x],x]* Range[0, 20]! (* Vaclav Kotesovec, Dec 27 2013 *)
-
{a(n)=local(A=1+x); for(i=1, n, A=1+A^3*intformal(1/(A^2+x*O(x^n)))); n!*polcoeff(A, n)}
for(n=0, 25, print1(a(n), ", "))
-
/* Explicit formula using g.f. of A001764, G(x) = 1 + x*G(x)^3: */
{a(n)=local(G=sum(m=0, n, binomial(3*m, m)/(2*m+1)*x^m)+x*O(x^n), A=1); A=1/sqrt(deriv(serreverse(intformal(G^2)))); n!*polcoeff(A, n)}
for(n=0, 25, print1(a(n), ", "))
-
/* Explicit formula: 1 + Series_Reversion(3*x/(1+x) - 2*log(1+x)): */
{a(n)=local(A=1, X=x+x^2*O(x^n)); A=1+serreverse(3*X/(1+X)-2*log(1+X)); n!*polcoeff(A, n)}
for(n=0, 25, print1(a(n), ", "))
A234295
E.g.f. satisfies: A(x) = 1 + A(x)^5 * Integral 1/A(x)^5 dx.
Original entry on oeis.org
1, 1, 5, 65, 1405, 42505, 1653125, 78578225, 4414067725, 286099718425, 21015972365525, 1725374840578625, 156560122048892125, 15559151967183795625, 1680744724811088153125, 196083244062052339084625, 24570430118524659881918125, 3291153805391398126661325625
Offset: 0
E.g.f.: A(x) = 1 + x + 5*x^2/2! + 65*x^3/3! + 1405*x^4/4! + 42505*x^5/5! +...
where A(5*log(1+x) - 4*x) = 1+x.
Related series:
A(x)^5 = 1 + 5*x + 45*x^2/2! + 685*x^3/3! + 15645*x^4/4! + 485645*x^5/5! +...
1/A(x)^5 = 1 - 5*x + 5*x^2/2! - 85*x^3/3! - 1595*x^4/4! - 50645*x^5/5! +...
(d/dx Series_Reversion(Integral 1/A(x)^5 dx))^(1/5) begins:
G(x) = 1 + x + 5*x^2 + 35*x^3 + 285*x^4 + 2530*x^5 +...+ A002294(n)*x^n +...
where G(x) = 1 + x*G(x)^5.
-
CoefficientList[1 + InverseSeries[Series[5*Log[1+x]-4*x, {x, 0, 20}], x],x]* Range[0, 20]! (* Vaclav Kotesovec, Dec 26 2013 *)
-
{a(n)=local(A=1+x); for(i=1, n, A=1+A^5*intformal(1/(A^5+x*O(x^n)))); n!*polcoeff(A, n)}
for(n=0, 25, print1(a(n), ", "))
-
{a(n)=local(A=1,X=x+x^2*O(x^n)); A=1+serreverse(5*log(1+X) - 4*X); n!*polcoeff(A, n)}
for(n=0, 25, print1(a(n), ", "))
-
/* O.g.f. continued fraction: */
{a(n)=local(CF=1+x*O(x)); for(k=0, n, CF=1-(n-k+1)*x-4*(n-k+1)*x/CF); polcoeff(1+x/CF, n, x)}
for(n=0, 25, print1(a(n), ", "))
Showing 1-7 of 7 results.
Comments