cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A229191 Decimal expansion of the integral_{x=0..Infinity} 1/x^x dx.

Original entry on oeis.org

1, 9, 9, 5, 4, 5, 5, 9, 5, 7, 5, 0, 0, 1, 3, 8, 0, 0, 0, 4, 1, 8, 7, 2, 4, 6, 9, 8, 4, 5, 2, 7, 2, 4, 3, 5, 2, 0, 8, 6, 2, 1, 6, 6, 3, 6, 9, 6, 7, 9, 7, 8, 8, 7, 2, 7, 8, 8, 3, 0, 0, 0, 6, 0, 9, 8, 3, 0, 3, 1, 6, 1, 7, 1, 4, 6, 5, 6, 6, 3, 6, 3, 0, 6, 6, 9, 5, 4, 9, 2, 7, 7, 8, 9, 4, 6, 3, 8, 7, 7, 0, 5, 8, 1, 6, 7, 6, 3, 7, 7, 0
Offset: 1

Views

Author

Robert G. Wilson v, Sep 15 2013

Keywords

Comments

"The function x^x grows even more quickly than Gamma(x) and the integral {0-inf} 1/x^x dx = 1.9954559575... and the integral {1-inf} 1/x^x dx = 0.7041699604... ." [Finch]

Examples

			1.9954559575001380004187246984527243520862166369679788727883...
		

References

  • Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, p. 263.

Crossrefs

Programs

  • Maple
    evalf(int(1/x^x, x=0..infinity), 120);  # Alois P. Heinz, Dec 30 2021
  • Mathematica
    RealDigits[ NIntegrate[ 1/x^x, {x, 0, 100}, MaxRecursion -> 5000, MaxPoints -> 5000, AccuracyGoal-> 111, PrecisionGoal -> 111, WorkingPrecision -> 120], 10, 111][[1]]

A046943 Continued fraction for Fransen-Robinson constant Integral_{x>=0} 1/Gamma(x).

Original entry on oeis.org

2, 1, 4, 4, 1, 18, 5, 1, 3, 4, 1, 5, 3, 6, 1, 1, 1, 5, 1, 1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 2, 1, 3, 1, 10, 1, 4, 7, 2, 2, 2, 46, 18, 1, 1, 3, 1, 1, 4, 5, 1, 1, 28, 6, 2, 1, 23, 1, 6, 1, 18, 1, 4, 1, 2, 1, 3, 2, 3, 5, 1, 1, 7, 1, 1, 1, 8, 1, 1, 1, 1, 2, 1, 7, 2, 2, 1, 1, 1, 1, 6, 1, 2, 2, 11, 2, 1, 1, 3, 7, 1
Offset: 0

Views

Author

Keywords

Examples

			2.807770242028519365221501186... = 2 + 1/(1 + 1/(4 + 1/(4 + 1/(1 + ...)))).
		

Crossrefs

Cf. A058655 (decimal expansion). - Harry J. Smith, May 13 2009

Programs

  • Mathematica
    f := N[Integrate[1/Gamma[x], {x, 0, Infinity}], 55]; ContinuedFraction[f, 50] (* G. C. Greubel, Nov 06 2017 *)

A247377 Decimal expansion of Integral_{0..oo} 1/Gamma(1+x) dx, a variation of the Fransén-Robinson constant.

Original entry on oeis.org

2, 2, 6, 6, 5, 3, 4, 5, 0, 7, 6, 9, 9, 8, 4, 8, 8, 3, 5, 0, 7, 1, 9, 6, 3, 8, 5, 7, 6, 7, 8, 2, 2, 0, 9, 1, 8, 4, 0, 8, 8, 2, 9, 7, 1, 4, 2, 8, 0, 2, 2, 2, 1, 9, 3, 8, 6, 1, 0, 9, 3, 5, 5, 4, 4, 2, 9, 1, 8, 8, 9, 9, 7, 6, 9, 1, 3, 7, 5, 2, 8, 1, 0, 8, 5, 0, 9, 1, 0, 6, 9, 7, 4, 7, 9, 3, 4, 0, 6, 9, 5, 8, 8, 4
Offset: 1

Views

Author

Jean-François Alcover, Sep 15 2014

Keywords

Examples

			2.266534507699848835071963857678220918408829714280222193861...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 4.6 Fransén-Robinson constant, p. 263.

Crossrefs

Cf. A058655.

Programs

  • Mathematica
    NIntegrate[1/Gamma[1 + x], {x, 0, Infinity}, WorkingPrecision -> 104] // RealDigits // First
  • PARI
    localprec(100); intnum(x=0,[[1], 1],1/gamma(1+x)) \\ Dumitru Damian, Oct 12 2023
  • Python
    from mpmath import *
    mp.dps = 200
    A247377 = [d for d in nstr(quad(lambda x:1/gamma(1+x),[0,inf]),n=mp.dps)[:-1] if d != '.'] # Chai Wah Wu, Sep 16 2014
    

Formula

Also equals e - Integral_{-oo..oo} e^(-e^x)/(x^2 + Pi^2) dx (observed by Ramanujan).

A273017 Decimal expansion of the first moment of the reciprocal gamma distribution.

Original entry on oeis.org

1, 9, 3, 4, 5, 6, 7, 0, 4, 2, 1, 4, 7, 8, 8, 4, 7, 2, 1, 1, 8, 3, 7, 1, 4, 7, 0, 4, 3, 6, 9, 1, 7, 8, 9, 2, 4, 3, 8, 2, 1, 7, 5, 5, 9, 2, 2, 6, 6, 5, 8, 8, 4, 8, 3, 8, 5, 5, 4, 4, 7, 5, 4, 2, 2, 5, 9, 5, 4, 4, 0, 8, 7, 4, 7, 1, 0, 1, 8, 2, 4, 7, 2, 2, 5, 4, 4, 5, 0, 0, 3, 8, 3, 4, 8, 2, 1, 0, 1, 7
Offset: 1

Views

Author

Jean-François Alcover, May 13 2016

Keywords

Examples

			1.93456704214788472118371470436917892438217559226658848385544754...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 4.6 Fransén-Robinson constant, p. 262.

Crossrefs

Cf. A058655.

Programs

  • Mathematica
    digits = 100;
    I0 = NIntegrate[1/Gamma[x], {x, 0, Infinity}, WorkingPrecision -> digits + 5];
    M1 = (1/I0) NIntegrate[x/Gamma[x], {x, 0, Infinity}, WorkingPrecision -> digits + 5];
    RealDigits[M1, 10, digits][[1]]
  • PARI
    default(realprecision, 120); intnum(x=0, [[1], 1], x/gamma(x))/intnum(x=0, [[1], 1], 1/gamma(x)) \\ Vaclav Kotesovec, May 14 2016

Formula

(1/I)*Integral_{x>=0} x/gamma(x) dx where I = Integral_{x>=0} 1/gamma(x) dx is the Fransén-Robinson constant.

A360375 Decimal expansion of the area under the curve of the reciprocal of the Hadamard gamma function from zero to infinity.

Original entry on oeis.org

3, 3, 6, 8, 2, 0, 2, 9, 2, 9, 6, 0, 7, 0, 2, 2, 7, 9, 2, 1, 6, 2, 2, 0, 5, 9, 6, 2, 2, 0, 9, 3, 6, 2, 5, 4, 8, 4, 7, 6, 1, 0, 6, 4, 8, 8, 7, 6, 1, 0, 3, 1, 2, 1, 9, 4, 7, 0, 2, 8, 7, 5, 2, 0, 2, 6, 1, 6, 1, 6, 0, 5, 1, 3, 3, 6, 1, 3, 1, 4, 4, 2, 0, 3, 0, 2, 5, 3, 9, 3, 9, 8, 4, 1, 2, 4, 4, 3, 8, 1, 3, 8, 1, 7, 2
Offset: 1

Views

Author

Hywel Normington, Feb 04 2023

Keywords

Comments

Close to 3 + (1/e) = 3.367879...
Sum_{n>=0} 1/H(n) = 1/log(2) + e - 1 = 3.1609768... This integral may have a similar representation to the Fransen-Robinson constant.

Examples

			3.368202929607022792162205962209362548476...
		

References

  • J. Hadamard, (1894), Oeuvre de Jacques Hadamard, Centre National de la Recherche Scientifiques, Paris, 1968.

Crossrefs

Cf. A058655.

Programs

  • Maple
    H := x -> 1/((sin(x*Pi)*(Psi(x/2) - Psi(1/2 + x/2)) + 2*Pi) * GAMMA(x)):
    evalf[80](2*Pi*Int(H, 0..60, method = Gquad)); # _Peter Luschny, Feb 20 2023
  • Mathematica
    RealDigits[NIntegrate[2*Gamma[1-x]/(PolyGamma[0, 1 - x/2] - PolyGamma[0, 1/2 - x/2]), {x, 0, Infinity}, WorkingPrecision -> 105, MaxRecursion -> Infinity]][[1]] (* Vaclav Kotesovec, Feb 19 2023 *)
  • PARI
    default(realprecision, 200); intnum(x=0,[[1], 1], 2*gamma(1-x) / (psi(1-x/2) - psi(1/2-x/2))) \\ (default(realprecision, 200) is enough for 40 valid digits, \p 500 for 71 valid digits, \p 1000 for 110 valid digits, \p 2000 for 171 valid digits). - Vaclav Kotesovec, Feb 19 2023

Formula

Hadamard function definitions:
H(x) = (1/Gamma(1-x)) * (d/dx) log(Gamma(1/2 - x/2)/Gamma(1-x/2)).
H(x) = Gamma(x)*(1 + (sin(Pi*x)/(2*Pi)) * (Psi(x/2) - Psi((x+1)/2))).
Equals Integral_{0..oo} 1/H(x) dx.

Extensions

More digits from Vaclav Kotesovec, Feb 19 2023

A245635 Decimal expansion of Integral_{x>=0} (1 / Gamma''(x)) dx.

Original entry on oeis.org

2, 2, 5, 2, 4, 4, 3, 9, 5, 2, 2, 2, 6, 5, 6, 1, 9, 6, 6, 6, 0, 8, 2, 2, 9, 9, 5, 8, 8, 7, 7, 9, 4, 2, 1, 3, 8, 4, 8, 6, 1, 6, 8, 5, 4, 6, 2, 0, 4, 2, 7, 4, 1, 9, 0, 1, 0, 8, 3, 0, 6, 1, 5, 2, 9, 6, 0, 2, 3, 1, 4, 3, 9, 2, 5, 0, 9, 9, 0, 9, 7, 3, 7, 4, 7, 1, 4, 1, 9, 5, 0, 9, 3, 6, 2, 2, 8, 3, 6, 9, 2, 7, 4, 2, 4
Offset: 1

Views

Author

Robert G. Wilson v, Jul 28 2014

Keywords

Examples

			2.25244395222656196660822995887794213848616854620427419010830615296023143925099...
		

Crossrefs

Cf. A058655.

Programs

  • Mathematica
    RealDigits[ NIntegrate[ 1/Gamma''[x], {x, 0, Infinity}, AccuracyGoal -> 111, WorkingPrecision -> 111]][[1]]

Extensions

Name corrected by Andrey Zabolotskiy, Dec 29 2023

A273051 Decimal expansion of the second moment of the reciprocal gamma distribution.

Original entry on oeis.org

4, 8, 3, 6, 4, 8, 5, 9, 7, 4, 6, 3, 3, 4, 2, 6, 8, 9, 4, 7, 3, 6, 3, 6, 0, 6, 9, 2, 3, 2, 1, 1, 3, 8, 9, 2, 4, 3, 6, 8, 5, 1, 6, 0, 8, 1, 0, 7, 3, 6, 0, 7, 2, 2, 9, 0, 3, 2, 9, 4, 2, 2, 4, 2, 1, 6, 0, 2, 7, 8, 6, 8, 4, 3, 7, 9, 7, 4, 5, 5, 2, 9, 5, 2, 3, 1, 3, 6, 1, 1, 0, 4, 0, 0, 3, 9, 3, 4, 4, 3, 7
Offset: 1

Views

Author

Jean-François Alcover, May 14 2016

Keywords

Examples

			4.83648597463342689473636069232113892436851608107360722903294224216...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 4.6 Fransén-Robinson constant, p. 262.

Crossrefs

Programs

  • Mathematica
    digits = 101;
    I0 = NIntegrate[1/Gamma[x], {x, 0, Infinity}, WorkingPrecision -> digits + 5];
    M2 = (1/I0) NIntegrate[x^2/Gamma[x], {x, 0, Infinity}, WorkingPrecision -> digits + 5];
    RealDigits[M2, 10, digits][[1]]
  • PARI
    default(realprecision, 120); intnum(x=0, [[1], 1], x^2/gamma(x))/intnum(x=0, [[1], 1], 1/gamma(x)) \\ Vaclav Kotesovec, May 14 2016

Formula

(1/I)*Integral_{x>=0} x^2/gamma(x) dx where I = Integral_{x>=0} 1/gamma(x) dx is the Fransén-Robinson constant.

A360809 Decimal expansion of the area under the curve of the reciprocal of the Luschny factorial function from zero to infinity.

Original entry on oeis.org

2, 5, 8, 6, 7, 0, 5, 0, 5, 9, 7, 8, 6, 8, 0, 8, 2, 2, 7, 7, 7, 8, 1, 0, 6, 8, 7, 2, 9, 4, 6, 9, 6, 0, 2, 1, 3, 5, 7, 3, 0, 9, 6, 2, 7, 4, 2, 4, 8, 9, 3, 6, 1, 2, 4, 4, 6, 7, 0, 8, 2, 4, 2, 2, 5, 8, 5, 9, 4, 0, 4, 5, 5, 6, 0, 6, 6, 4, 3, 4, 2, 6, 4, 2, 8, 8, 2, 7, 7, 7, 5, 6, 7, 5, 3, 9, 0, 8, 8, 7, 6, 4, 4, 6, 9, 9, 8, 1
Offset: 1

Views

Author

Hywel Normington, Feb 21 2023

Keywords

Examples

			2.58670505978680822777810687294696021357309627424893612446708242258594...
		

Crossrefs

Programs

  • Maple
    L := proc(x) local G, S, y; if x = 0 then return 0.5 fi; y := x * 0.5; if is(x < 0) then y := -y fi; G := y * (Psi(y + 0.5) - Psi(y)) - 0.5; if is(x < 0) then return G/(-x)! fi; y := Pi * x; S := sin(y) / y; (1 - S * G) * x! end: RL := x -> 1 / L(x):
    IntRL := n -> evalf[n](Int(RL, 0..n, method = Gquad)): IntRL(40); # _Peter Luschny, Feb 22 2023
  • Mathematica
    RealDigits[NIntegrate[1 / (Gamma[x+1] * (1 - (x/2 * (PolyGamma[0, (x+1)/2] - PolyGamma[0, x/2]) - 1/2) * Sin[Pi*x]/(Pi*x))), {x, 0, Infinity}, WorkingPrecision -> 110, MaxRecursion -> Infinity]][[1]] (* Vaclav Kotesovec, Feb 22 2023 *)
  • PARI
    default(realprecision, 500); intnum(x=0, [[1], 1], 1 / (gamma(x+1) * (1 - (x/2 * (psi((x+1)/2) - psi(x/2)) - 1/2) * sin(Pi*x)/(Pi*x)))) \\ (default(realprecision, 200) is enough for 59 valid digits, \p 500 for 102 valid digits, \p 1000 for 148 valid digits). - Vaclav Kotesovec, Feb 22 2023

Formula

L(x) = Gamma(x+1)P(x), where P(x) = 1 - g(x)*sin(Pi*x)/(Pi*x) and g(x) = (x/2)*(Psi((x+1)/2) - Psi(x/2)) - 1/2.
Equals Integral_{0..oo} 1/L(x) dx.

Extensions

More digits from Vaclav Kotesovec, Feb 22 2023
Showing 1-8 of 8 results.