A058681 Number of matroids of rank 2 on n labeled points.
0, 0, 1, 7, 36, 171, 813, 4012, 20891, 115463, 677546, 4211549, 27640341, 190891130, 1382942161, 10480109379, 82864804268, 682076675087, 5832741942913, 51724157711084, 474869815108175, 4506715736350171, 44152005850890042, 445958869286416681, 4638590332213222137
Offset: 0
Examples
a(3) = 7 because there are 7 collections (having more than one element)of nonempty subsets of {1,2,3} that are pairwise disjoint: {1}{2}; {1}{3}; {1}{2,3}; {2}{3}; {2}{1,3}; {1,2}{3}; {1}{2}{3}. - _Geoffrey Critzer_, Oct 10 2009
Links
- T. D. Noe, Table of n, a(n) for n = 0..100
- W. M. B. Dukes, Tables of matroids.
- W. M. B. Dukes, Counting and Probability in Matroid Theory, Ph.D. Thesis, Trinity College, Dublin, 2000.
- W. M. B. Dukes, On the number of matroids on a finite set, arXiv:math/0411557 [math.CO], 2004.
- I. J. Good, The number of hypotheses of independence for a random vector or for a multidimensional contingency table, and the Bell numbers, Iranian J. Science and Technology, 4, (1975), 77-83. [See Eq. (9), p. 80.]
- Markus Kirchweger, Manfred Scheucher, and Stefan Szeider, A SAT Attack on Rota's Basis Conjecture, Leibniz International Proceedings in Informatics (LIPIcs 2022) Vol. 236, 4:1-4:18.
- A. O. Munagi, k-Complementing Subsets of Nonnegative Integers, International Journal of Mathematics and Mathematical Sciences, 2005:2 (2005), 215-224.
- Index entries for sequences related to matroids
Crossrefs
Programs
-
Maple
egf := exp(x + exp(x) - 1) - exp(2*x); ser := series(egf, x, 24): seq(simplify(n!*coeff(ser,x,n)), n=0..22); # Peter Luschny, Jan 08 2021
-
Mathematica
f[n_] := Sum[ StirlingS2[n + 1, k+2], {k, 1, n}]; Table[ f[n], {n, 0, 23}] (* Zerinvary Lajos, Mar 21 2007 *) Table[BellB[n+1]-2^n,{n,0,30}] (* Harvey P. Dale, Oct 13 2011 *)
-
PARI
a(n) = sum(k=1, n, stirling(n+1, k+2, 2)); \\ Ruud H.G. van Tol, May 09 2024
-
PARI
my(x='x+O('x^33)); concat([0,0],Vec(serlaplace(exp(x + exp(x) - 1) - exp(2*x)))) \\ Joerg Arndt, May 10 2024
Formula
a(n) = B(n+1)-2^n, B = Bell numbers (A000110).
E.g.f.: d/dz (exp(exp(z)-1) - (1/2)*exp(2*z) - 1/2). - Thomas Wieder, Nov 30 2004
a(n) = Sum_{i=2..n} binomial(n,i)*(B(i)-1), B=Bell numbers A000110. - Geoffrey Critzer, Oct 10 2009
E.g.f.: exp(x + exp(x) - 1) - exp(2*x). - Peter Luschny, Jan 08 2021
Extensions
More terms from James Sellers, Jan 03 2001
a(0) = a(1) = 0 prepended by Peter Luschny, Jan 08 2021
Comments