cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A058696 Number of ways to partition 2n into positive integers.

Original entry on oeis.org

1, 2, 5, 11, 22, 42, 77, 135, 231, 385, 627, 1002, 1575, 2436, 3718, 5604, 8349, 12310, 17977, 26015, 37338, 53174, 75175, 105558, 147273, 204226, 281589, 386155, 526823, 715220, 966467, 1300156, 1741630, 2323520, 3087735, 4087968, 5392783, 7089500, 9289091
Offset: 0

Views

Author

N. J. A. Sloane, Dec 31 2000

Keywords

Comments

A bisection of A000041, the other one is A058695.
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700). - Michael Somos, Feb 16 2014
a(n) is the number of partitions of 3n-2 having n as a part, for n >= 1. Also, a(n+1) is the number of partitions of 3n having n as a part, for n >= 1. - Clark Kimberling, Mar 02 2014

Examples

			G.f. = 1 + 2*x + 5*x^2 + 11*x^3 + 22*x^4 + 42*x^5 + 77*x^6 + 135*x^7 + ...
G.f. = q^-1 + 2*q^47 + 5*q^95 + 11*q^143 + 22*q^191 + 42*q^239 + 77*q^287 + ...
		

Crossrefs

Programs

  • Maple
    a:= n-> combinat[numbpart](2*n):
    seq(a(n), n=0..42);  # Alois P. Heinz, Jan 29 2020
  • Mathematica
    nn=100;Table[CoefficientList[Series[Product[1/(1-x^i),{i,1,nn}],{x,0,nn}],x][[2i-1]],{i,1,nn/2}] (* Geoffrey Critzer, Sep 28 2013 *)
    (* also *)
    Table[PartitionsP[2 n], {n, 0, 40}] (* Clark Kimberling, Mar 02 2014 *)
    (* also *)
    Table[Count[IntegerPartitions[3 n - 2], p_ /; MemberQ[p, n]], {n, 20}]   (* Clark Kimberling, Mar 02 2014 *)
    nmax = 60; CoefficientList[Series[Product[(1 + x^(8*k-4))*(1 + x^(8*k))*(1 + x^k)^2/((1 + x^(8*k-1))*(1 + x^(8*k-7))*(1 - x^k)), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Nov 17 2016 *)
  • MuPAD
    combinat::partitions::count(2*i) $i=0..54 // Zerinvary Lajos, Apr 16 2007
  • PARI
    {a(n) = if( n<0, 0, polcoeff( 1 / eta(x + O(x^(2*n + 1))), 2*n))}; /* Michael Somos, Apr 25 2003 */
    
  • PARI
    a(n) = numbpart(2*n); \\ Michel Marcus, Sep 28 2013
    

Formula

Expansion of f(x^3, x^5) / f(-x)^2 in powers of x where f() is a Ramanujan theta function. - Michael Somos, Feb 16 2014
Euler transform of period 16 sequence [ 2, 2, 3, 2, 3, 1, 2, 1, 2, 1, 3, 2, 3, 2, 2, 1, ...]. - Michael Somos, Apr 25 2003
a(n) = A000041(2*n).
Convolution of A000041 and A035294. - Michael Somos, Feb 16 2014
G.f.: Product_{k>=1} (1 + x^(8*k-4)) * (1 + x^(8*k)) * (1 + x^k)^2 / ((1 + x^(8*k-1)) * (1 + x^(8*k-7)) * (1 - x^k)). - Vaclav Kotesovec, Nov 17 2016
a(n) ~ exp(2*Pi*sqrt(n/3)) / (8*sqrt(3)*n). - Vaclav Kotesovec, Feb 16 2022