A058696 Number of ways to partition 2n into positive integers.
1, 2, 5, 11, 22, 42, 77, 135, 231, 385, 627, 1002, 1575, 2436, 3718, 5604, 8349, 12310, 17977, 26015, 37338, 53174, 75175, 105558, 147273, 204226, 281589, 386155, 526823, 715220, 966467, 1300156, 1741630, 2323520, 3087735, 4087968, 5392783, 7089500, 9289091
Offset: 0
Keywords
Examples
G.f. = 1 + 2*x + 5*x^2 + 11*x^3 + 22*x^4 + 42*x^5 + 77*x^6 + 135*x^7 + ... G.f. = q^-1 + 2*q^47 + 5*q^95 + 11*q^143 + 22*q^191 + 42*q^239 + 77*q^287 + ...
Links
- Seiichi Manyama, Table of n, a(n) for n = 0..10000
- Roland Bacher and Pierre De La Harpe, Conjugacy growth series of some infinitely generated groups, International Mathematics Research Notices, 2016, pp.1-53. (hal-01285685v2)
- K. Blum, Bounds on the Number of Graphical Partitions, arXiv:2103.03196 [math.CO], 2021. See Table on p. 7.
- Álvaro Gutiérrez and Mercedes H. Rosas, Partial symmetries of iterated plethysms, arXiv:2201.00240 [math.CO], 2022.
- Michael Somos, Introduction to Ramanujan theta functions
- Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
Programs
-
Maple
a:= n-> combinat[numbpart](2*n): seq(a(n), n=0..42); # Alois P. Heinz, Jan 29 2020
-
Mathematica
nn=100;Table[CoefficientList[Series[Product[1/(1-x^i),{i,1,nn}],{x,0,nn}],x][[2i-1]],{i,1,nn/2}] (* Geoffrey Critzer, Sep 28 2013 *) (* also *) Table[PartitionsP[2 n], {n, 0, 40}] (* Clark Kimberling, Mar 02 2014 *) (* also *) Table[Count[IntegerPartitions[3 n - 2], p_ /; MemberQ[p, n]], {n, 20}] (* Clark Kimberling, Mar 02 2014 *) nmax = 60; CoefficientList[Series[Product[(1 + x^(8*k-4))*(1 + x^(8*k))*(1 + x^k)^2/((1 + x^(8*k-1))*(1 + x^(8*k-7))*(1 - x^k)), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Nov 17 2016 *)
-
MuPAD
combinat::partitions::count(2*i) $i=0..54 // Zerinvary Lajos, Apr 16 2007
-
PARI
{a(n) = if( n<0, 0, polcoeff( 1 / eta(x + O(x^(2*n + 1))), 2*n))}; /* Michael Somos, Apr 25 2003 */
-
PARI
a(n) = numbpart(2*n); \\ Michel Marcus, Sep 28 2013
Formula
Expansion of f(x^3, x^5) / f(-x)^2 in powers of x where f() is a Ramanujan theta function. - Michael Somos, Feb 16 2014
Euler transform of period 16 sequence [ 2, 2, 3, 2, 3, 1, 2, 1, 2, 1, 3, 2, 3, 2, 2, 1, ...]. - Michael Somos, Apr 25 2003
a(n) = A000041(2*n).
G.f.: Product_{k>=1} (1 + x^(8*k-4)) * (1 + x^(8*k)) * (1 + x^k)^2 / ((1 + x^(8*k-1)) * (1 + x^(8*k-7)) * (1 - x^k)). - Vaclav Kotesovec, Nov 17 2016
a(n) ~ exp(2*Pi*sqrt(n/3)) / (8*sqrt(3)*n). - Vaclav Kotesovec, Feb 16 2022
Comments