cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 84 results. Next

A088218 Total number of leaves in all rooted ordered trees with n edges.

Original entry on oeis.org

1, 1, 3, 10, 35, 126, 462, 1716, 6435, 24310, 92378, 352716, 1352078, 5200300, 20058300, 77558760, 300540195, 1166803110, 4537567650, 17672631900, 68923264410, 269128937220, 1052049481860, 4116715363800, 16123801841550, 63205303218876, 247959266474052
Offset: 0

Views

Author

Michael Somos, Sep 24 2003

Keywords

Comments

Essentially the same as A001700, which has more information.
Note that the unique rooted tree with no edges has no leaves, so a(0)=1 is by convention. - Michael Somos, Jul 30 2011
Number of ordered partitions of n into n parts, allowing zeros (cf. A097070) is binomial(2*n-1,n) = a(n) = essentially A001700. - Vladeta Jovovic, Sep 15 2004
Hankel transform is A000027; example: Det([1,1,3,10;1,3,10,35;3,10,35,126; 10,35,126,462]) = 4. - Philippe Deléham, Apr 13 2007
a(n) is the number of functions f:[n]->[n] such that for all x,y in [n] if xA045992(n). - Geoffrey Critzer, Apr 02 2009
Hankel transform of the aeration of this sequence is A000027 doubled: 1,1,2,2,3,3,... - Paul Barry, Sep 26 2009
The Fi1 and Fi2 triangle sums of A039599 are given by the terms of this sequence. For the definitions of these triangle sums see A180662. - Johannes W. Meijer, Apr 20 2011
Alternating row sums of Riordan triangle A094527. See the Philippe Deléham formula. - Wolfdieter Lang, Nov 22 2012
(-2)*a(n) is the Z-sequence for the Riordan triangle A110162. For the notion of Z- and A-sequences for Riordan arrays see the W. Lang link under A006232 with details and references. - Wolfdieter Lang, Nov 22 2012
From Gus Wiseman, Jun 27 2021: (Start)
Also the number of integer compositions of 2n with alternating (or reverse-alternating) sum 0 (ranked by A344619). This is equivalent to Ran Pan's comment at A001700. For example, the a(0) = 1 through a(3) = 10 compositions are:
() (11) (22) (33)
(121) (132)
(1111) (231)
(1122)
(1221)
(2112)
(2211)
(11121)
(12111)
(111111)
For n > 0, a(n) is also the number of integer compositions of 2n with alternating sum 2.
(End)
Number of terms in the expansion of (x_1+x_2+...+x_n)^n. - César Eliud Lozada, Jan 08 2022

Examples

			G.f. = 1 + x + 3*x^2 + 10*x^3 + 35*x^4 + 126*x^5 + 462*x^6 + 1716*x^7 + ...
The five rooted ordered trees with 3 edges have 10 leaves.
..x........................
..o..x.x..x......x.........
..o...o...o.x..x.o..x.x.x..
..r...r....r....r.....r....
		

References

  • L. W. Shapiro and C. J. Wang, Generating identities via 2 X 2 matrices, Congressus Numerantium, 205 (2010), 33-46.

Crossrefs

Same as A001700 modulo initial term and offset.
First differences are A024718.
Main diagonal of A071919 and of A305161.
A signed version is A110556.
A000041 counts partitions of 2n with alternating sum 0, ranked by A000290.
A003242 counts anti-run compositions.
A025047 counts wiggly compositions (ascend: A025048, descend: A025049).
A103919 counts partitions by sum and alternating sum (reverse: A344612).
A106356 counts compositions by number of maximal anti-runs.
A124754 gives the alternating sum of standard compositions.
A345197 counts compositions by sum, length, and alternating sum.
Compositions of n, 2n, or 2n+1 with alternating/reverse-alternating sum k:
- k = 0: counted by A088218 (this sequence), ranked by A344619/A344619.
- k = 1: counted by A000984, ranked by A345909/A345911.
- k = -1: counted by A001791, ranked by A345910/A345912.
- k = 2: counted by A088218 (this sequence), ranked by A345925/A345922.
- k = -2: counted by A002054, ranked by A345924/A345923.
- k >= 0: counted by A116406, ranked by A345913/A345914.
- k <= 0: counted by A058622(n-1), ranked by A345915/A345916.
- k > 0: counted by A027306, ranked by A345917/A345918.
- k < 0: counted by A294175, ranked by A345919/A345920.
- k != 0: counted by A058622, ranked by A345921/A345921.
- k even: counted by A081294, ranked by A053754/A053754.
- k odd: counted by A000302, ranked by A053738/A053738.

Programs

  • Magma
    [Binomial(2*n-1, n): n in [0..30]]; // Vincenzo Librandi, Aug 07 2014
  • Maple
    seq(binomial(2*n-1, n),n=0..24); # Peter Luschny, Sep 22 2014
  • Mathematica
    a[ n_] := SeriesCoefficient[(1 - x)^-n, {x, 0, n}];
    c = (1 - (1 - 4 x)^(1/2))/(2 x);CoefficientList[Series[1/(1-(c-1)),{x,0,20}],x] (* Geoffrey Critzer, Dec 02 2010 *)
    Table[Binomial[2 n - 1, n], {n, 0, 20}] (* Vincenzo Librandi, Aug 07 2014 *)
    a[ n_] := If[ n < 0, 0, With[ {m = 2 n}, m! SeriesCoefficient[ (1 + BesselI[0, 2 x]) / 2, {x, 0, m}]]]; (* Michael Somos, Nov 22 2014 *)
  • PARI
    {a(n) = sum( i=0, n, binomial(n+i-2,i))};
    
  • PARI
    {a(n) = if( n<0, 0, polcoeff( (1 + 1 / sqrt(1 - 4*x + x * O(x^n))) / 2, n))};
    
  • PARI
    {a(n) = if( n<0, 0, polcoeff( 1 / (1 - x + x * O(x^n))^n, n))};
    
  • PARI
    {a(n) = if( n<0, 0, binomial( 2*n - 1, n))};
    
  • PARI
    {a(n) = if( n<1, n==0, polcoeff( subst((1 - x) / (1 - 2*x), x, serreverse( x - x^2 + x * O(x^n))), n))};
    
  • Sage
    def A088218(n):
        return rising_factorial(n,n)/falling_factorial(n,n)
    [A088218(n) for n in (0..24)]  # Peter Luschny, Nov 21 2012
    

Formula

G.f.: (1 + 1 / sqrt(1 - 4*x)) / 2.
a(n) = binomial(2*n - 1, n).
a(n) = (n+1)*A000108(n)/2, n>=1. - B. Dubalski (dubalski(AT)atr.bydgoszcz.pl), Feb 05 2002 (in A060150)
a(n) = (0^n + C(2n, n))/2. - Paul Barry, May 21 2004
a(n) is the coefficient of x^n in 1 / (1 - x)^n and also the sum of the first n coefficients of 1 / (1 - x)^n. Given B(x) with the property that the coefficient of x^n in B(x)^n equals the sum of the first n coefficients of B(x)^n, then B(x) = B(0) / (1 - x).
G.f.: 1 / (2 - C(x)) = (1 - x*C(x))/sqrt(1-4*x) where C(x) is g.f. for Catalan numbers A000108. Second equation added by Wolfdieter Lang, Nov 22 2012.
From Paul Barry, Nov 02 2004: (Start)
a(n) = Sum_{k=0..n} binomial(2*n, k)*cos((n-k)*Pi);
a(n) = Sum_{k=0..n} binomial(n, (n-k)/2)*(1+(-1)^(n-k))*cos(k*Pi/2)/2 (with interpolated zeros);
a(n) = Sum_{k=0..floor(n/2)} binomial(n, k)*cos((n-2*k)*Pi/2) (with interpolated zeros); (End)
a(n) = A110556(n)*(-1)^n, central terms in triangle A110555. - Reinhard Zumkeller, Jul 27 2005
a(n) = Sum_{0<=k<=n} A094527(n,k)*(-1)^k. - Philippe Deléham, Mar 14 2007
From Paul Barry, Mar 29 2010: (Start)
G.f.: 1/(1-x/(1-2x/(1-(1/2)x/(1-(3/2)x/(1-(2/3)x/(1-(4/3)x/(1-(3/4)x/(1-(5/4)x/(1-... (continued fraction);
E.g.f.: (of aerated sequence) (1 + Bessel_I(0, 2*x))/2. (End)
a(n + 1) = A001700(n). a(n) = A024718(n) - A024718(n - 1).
E.g.f.: E(x) = 1+x/(G(0)-2*x) ; G(k) = (k+1)^2+2*x*(2*k+1)-2*x*(2*k+3)*((k+1)^2)/G(k+1); (continued fraction). - Sergei N. Gladkovskii, Dec 21 2011
a(n) = Sum_{k=0..n}(-1)^k*binomial(2*n,n+k). - Mircea Merca, Jan 28 2012
a(n) = rf(n,n)/ff(n,n), where rf is the rising factorial and ff the falling factorial. - Peter Luschny, Nov 21 2012
D-finite with recurrence: n*a(n) +2*(-2*n+1)*a(n-1) = 0. - R. J. Mathar, Dec 04 2012
a(n) = hypergeom([1-n,-n],[1],1). - Peter Luschny, Sep 22 2014
G.f.: 1 + x/W(0), where W(k) = 4*k+1 - (4*k+3)*x/(1 - (4*k+1)*x/(4*k+3 - (4*k+5)*x/(1 - (4*k+3)*x/W(k+1) ))) ; (continued fraction). - Sergei N. Gladkovskii, Nov 13 2014
a(n) = A000984(n) + A001791(n). - Gus Wiseman, Jun 28 2021
E.g.f.: (1 + exp(2*x) * BesselI(0,2*x)) / 2. - Ilya Gutkovskiy, Nov 03 2021
From Amiram Eldar, Mar 12 2023: (Start)
Sum_{n>=0} 1/a(n) = 5/3 + 4*Pi/(9*sqrt(3)).
Sum_{n>=0} (-1)^n/a(n) = 3/5 - 8*log(phi)/(5*sqrt(5)), where phi is the golden ratio (A001622). (End)
a(n) ~ 2^(2*n-1)/sqrt(n*Pi). - Stefano Spezia, Apr 17 2024

A027187 Number of partitions of n into an even number of parts.

Original entry on oeis.org

1, 0, 1, 1, 3, 3, 6, 7, 12, 14, 22, 27, 40, 49, 69, 86, 118, 146, 195, 242, 317, 392, 505, 623, 793, 973, 1224, 1498, 1867, 2274, 2811, 3411, 4186, 5059, 6168, 7427, 9005, 10801, 13026, 15572, 18692, 22267, 26613, 31602, 37619, 44533, 52815, 62338, 73680, 86716, 102162, 119918
Offset: 0

Views

Author

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
For n > 0, also the number of partitions of n whose greatest part is even. [Edited by Gus Wiseman, Jan 05 2021]
Number of partitions of n+1 into an odd number of parts, the least being 1.
Also the number of partitions of n such that the number of even parts has the same parity as the number of odd parts; see Comments at A027193. - Clark Kimberling, Feb 01 2014, corrected Jan 06 2021
Suppose that c(0) = 1, that c(1), c(2), ... are indeterminates, that d(0) = 1, and that d(n) = -c(n) - c(n-1)*d(1) - ... - c(0)*d(n-1). When d(n) is expanded as a polynomial in c(1), c(2),..,c(n), the terms are of the form H*c(i_1)*c(i_2)*...*c(i_k). Let P(n) = [c(i_1), c(i_2), ..., c(i_k)], a partition of n. Then H is negative if P has an odd number of parts, and H is positive if P has an even number of parts. That is, d(n) has A027193(n) negative coefficients, A027187(n) positive coefficients, and A000041 terms. The maximal coefficient in d(n), in absolute value, is A102462(n). - Clark Kimberling, Dec 15 2016

Examples

			G.f. = 1 + x^2 + x^3 + 3*x^4 + 3*x^5 + 6*x^6 + 7*x^7 + 12*x^8 + 14*x^9 + 22*x^10 + ...
From _Gus Wiseman_, Jan 05 2021: (Start)
The a(2) = 1 through a(8) = 12 partitions into an even number of parts are the following. The Heinz numbers of these partitions are given by A028260.
  (11)  (21)  (22)    (32)    (33)      (43)      (44)
              (31)    (41)    (42)      (52)      (53)
              (1111)  (2111)  (51)      (61)      (62)
                              (2211)    (2221)    (71)
                              (3111)    (3211)    (2222)
                              (111111)  (4111)    (3221)
                                        (211111)  (3311)
                                                  (4211)
                                                  (5111)
                                                  (221111)
                                                  (311111)
                                                  (11111111)
The a(2) = 1 through a(8) = 12 partitions whose greatest part is even are the following. The Heinz numbers of these partitions are given by A244990.
  (2)  (21)  (4)    (41)    (6)      (43)      (8)
             (22)   (221)   (42)     (61)      (44)
             (211)  (2111)  (222)    (421)     (62)
                            (411)    (2221)    (422)
                            (2211)   (4111)    (431)
                            (21111)  (22111)   (611)
                                     (211111)  (2222)
                                               (4211)
                                               (22211)
                                               (41111)
                                               (221111)
                                               (2111111)
(End)
		

References

  • N. J. Fine, Basic Hypergeometric Series and Applications, Amer. Math. Soc., 1988; See p. 8, (7.323) and p. 39, Example 7.

Crossrefs

The Heinz numbers of these partitions are A028260.
The odd version is A027193.
The strict case is A067661.
The case of even sum as well as length is A236913 (the even bisection).
Other cases of even length:
- A024430 counts set partitions of even length.
- A034008 counts compositions of even length.
- A052841 counts ordered set partitions of even length.
- A174725 counts ordered factorizations of even length.
- A332305 counts strict compositions of even length
- A339846 counts factorizations of even length.
A000009 counts partitions into odd parts, ranked by A066208.
A026805 counts partitions whose least part is even.
A072233 counts partitions by sum and length.
A101708 counts partitions of even positive rank.

Programs

  • Mathematica
    f[n_] := Length[Select[IntegerPartitions[n], IntegerQ[First[#]/2] &]]; Table[f[n], {n, 1, 30}] (* Clark Kimberling, Mar 13 2012 *)
    a[ n_] := SeriesCoefficient[ (1 + EllipticTheta[ 4, 0, x]) / (2 QPochhammer[ x]), {x, 0, n}]; (* Michael Somos, May 06 2015 *)
    a[ n_] := If[ n < 0, 0, Length@Select[ IntegerPartitions[n], EvenQ[Length @ #] &]]; (* Michael Somos, May 06 2015 *)
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( sum( k=0, sqrtint(n), (-x)^k^2, A) / eta(x + A), n))}; /* Michael Somos, Aug 19 2006 */
    
  • PARI
    my(q='q+O('q^66)); Vec( (1/eta(q)+eta(q)/eta(q^2))/2 ) \\ Joerg Arndt, Mar 23 2014

Formula

a(n) = (A000041(n) + (-1)^n * A000700(n))/2.
a(n) = p(n) - p(n-1) + p(n-4) - p(n-9) + ... where p(n) is the number of unrestricted partitions of n, A000041. [Fine] - David Callan, Mar 14 2004
From Bill Gosper, Jun 25 2005: (Start)
G.f.: A(q) = Sum_{n >= 0} a(n) q^n = 1 + q^2 + q^3 + 3*q^4 + 3*q^5 + 6*q^6 + ...
= Sum_{n >= 0} q^(2*n)/(q; q)_{2*n}
= ((Product_{k >= 1} 1/(1-q^k)) + (Product_{k >= 1} 1/(1+q^k)))/2.
Also, let B(q) = Sum_{n >= 0} A027193(n) q^n = q + q^2 + 2*q^3 + 2*q^4 + 4*q^5 + 5*q^6 + ...
Then B(q) = Sum_{n >= 0} q^(2*n+1)/(q; q){2*n+1} = ((Product{k >= 1} 1/(1-q^k)) - (Product_{k >= 1} 1/(1+q^k)))/2.
Also we have the following identity involving 2 X 2 matrices:
Product_{k >= 1} [ 1/(1-q^(2*k)), q^k/(1-q^(2*k)) ; q^k/(1-q^(2*k)), 1/(1-q^(2*k)) ]
= [ A(q), B(q) ; B(q), A(q) ]. (End)
a(2*n) = A046682(2*n), a(2*n+1) = A000701(2*n+1); a(n) = A000041(n)-A027193(n). - Reinhard Zumkeller, Apr 22 2006
Expansion of (1 + phi(-q)) / (2 * f(-q)) where phi(), f() are Ramanujan theta functions. - Michael Somos, Aug 19 2006
G.f.: (Sum_{k>=0} (-1)^k * x^(k^2)) / (Product_{k>0} (1 - x^k)). - Michael Somos, Aug 19 2006
a(n) = A338914(n) + A096373(n). - Gus Wiseman, Jan 06 2021

Extensions

Offset changed to 0 by Michael Somos, Jul 24 2012

A025065 Number of palindromic partitions of n.

Original entry on oeis.org

1, 1, 2, 2, 4, 4, 7, 7, 12, 12, 19, 19, 30, 30, 45, 45, 67, 67, 97, 97, 139, 139, 195, 195, 272, 272, 373, 373, 508, 508, 684, 684, 915, 915, 1212, 1212, 1597, 1597, 2087, 2087, 2714, 2714, 3506, 3506, 4508, 4508, 5763, 5763, 7338, 7338, 9296, 9296, 11732, 11732, 14742, 14742, 18460, 18460, 23025, 23025, 28629, 28629
Offset: 0

Views

Author

Keywords

Comments

That is, the number of partitions of n into parts which can be listed in palindromic order.
Alternatively, number of partitions of n into parts from the set {1,2,4,6,8,10,12,...}. - T. D. Noe, Aug 05 2005
Also, partial sums of A035363.
Also number of partitions of n with at most one part occurring an odd number of times. - Reinhard Zumkeller, Dec 18 2013
The first Mathematica program computes terms of A025065; the second computes the k palindromic partitions of user-chosen n. - Clark Kimberling, Jan 20 2014
a(n) is the number of partitions p of n+1 such that 2*max(p) > n+1. - Clark Kimberling, Apr 20 2014.
From Gus Wiseman, Nov 28 2018: (Start)
Also the number of integer partitions of n + 2 that are the vertex-degrees of some hypertree. For example, the a(6) = 7 partitions of 8 that are the vertex-degrees of some hypertree, together with a realizing hypertree are:
(41111): {{1,2},{1,3},{1,4},{1,5}}
(32111): {{1,2},{1,3},{1,4},{2,5}}
(22211): {{1,2},{1,3},{2,4},{3,5}}
(311111): {{1,2},{1,3},{1,4,5,6}}
(221111): {{1,2},{1,3},{2,4,5,6}}
(2111111): {{1,2},{1,3,4,5,6,7}}
(11111111): {{1,2,3,4,5,6,7,8}}
(End)
Conjecture: a(n) is the length of maximal initial segment of A308355(n-1) that is identical to row n of A128628, for n >= 2. - Clark Kimberling, May 24 2019
From Gus Wiseman, May 21 2021: (Start)
The Heinz numbers of palindromic partitions are given by A265640. The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k), giving a bijective correspondence between positive integers and integer partitions.
Also the number of integer partitions of n with a part greater than or equal to n/2. This is equivalent to Clark Kimberling's final comment above. The Heinz numbers of these partitions are given by A344414. For example, the a(1) = 1 through a(8) = 12 partitions are:
(1) (2) (3) (4) (5) (6) (7) (8)
(11) (21) (22) (32) (33) (43) (44)
(31) (41) (42) (52) (53)
(211) (311) (51) (61) (62)
(321) (421) (71)
(411) (511) (422)
(3111) (4111) (431)
(521)
(611)
(4211)
(5111)
(41111)
Also the number of integer partitions of n with at least n/2 parts. The Heinz numbers of these partitions are given by A344296. For example, the a(1) = 1 through a(8) = 12 partitions are:
(1) (2) (21) (22) (221) (222) (2221) (2222)
(11) (111) (31) (311) (321) (3211) (3221)
(211) (2111) (411) (4111) (3311)
(1111) (11111) (2211) (22111) (4211)
(3111) (31111) (5111)
(21111) (211111) (22211)
(111111) (1111111) (32111)
(41111)
(221111)
(311111)
(2111111)
(11111111)
(End)

Examples

			The partitions for the first few values of n are as follows:
n: partitions .......................... number
1: 1 ................................... 1
2: 2 11 ................................ 2
3: 3 111 ............................... 2
4: 4 22 121 1111 ....................... 4
5: 5 131 212 11111 ..................... 4
6: 6 141 33 222 1221 11211 111111 ...... 7
7: 7 151 313 11311 232 21112 1111111 ... 7
From _Reinhard Zumkeller_, Jan 23 2010: (Start)
Partitions into 1,2,4,6,... for the first values of n:
1: 1 ....................................... 1
2: 2 11 .................................... 2
3: 21 111 .................................. 2
4: 4 22 211 1111 ........................... 4
5: 41 221 2111 11111 ....................... 4
6: 6 42 4211 222 2211 21111 111111.......... 7
7: 61 421 42111 2221 22111 211111 1111111 .. 7. (End)
		

Crossrefs

Cf. A172033, A004277. - Reinhard Zumkeller, Jan 23 2010
The bisections are both A000070.
The ordered version (palindromic compositions) is A016116.
The complement is counted by A233771 and A210249.
The case of palindromic prime signature is A242414.
Palindromic partitions are ranked by A265640, with complement A229153.
The case of palindromic plane trees is A319436.
The multiplicative version (palindromic factorizations) is A344417.
A000569 counts graphical partitions.
A027187 counts partitions of even length, ranked by A028260.
A035363 counts partitions into even parts, ranked by A066207.
A058696 counts partitions of even numbers, ranked by A300061.
A110618 counts partitions with length <= half sum, ranked by A344291.

Programs

  • Haskell
    a025065 = p (1:[2,4..]) where
       p [] _ = 0
       p _  0 = 1
       p ks'@(k:ks) m | m < k     = 0
                      | otherwise = p ks' (m - k) + p ks m
    -- Reinhard Zumkeller, Aug 12 2011
    
  • Haskell
    import Data.List (group)
    a025065 = length . filter (<= 1) .
                       map (sum . map ((`mod` 2) . length) . group) . ps 1
       where ps x 0 = [[]]
             ps x y = [t:ts | t <- [x..y], ts <- ps t (y - t)]
    -- Reinhard Zumkeller, Dec 18 2013
    
  • Mathematica
    Map[Length[Select[IntegerPartitions[#], Count[OddQ[Transpose[Tally[#]][[2]]], True] <= 1 &]] &, Range[40]] (* Peter J. C. Moses, Jan 20 2014 *)
    n = 8; Select[IntegerPartitions[n], Count[OddQ[Transpose[Tally[#]][[2]]], True] <= 1 &] (* Peter J. C. Moses, Jan 20 2014 *)
    CoefficientList[Series[1/((1 - x) Product[1 - x^(2 n), {n, 1, 50}]), {x, 0, 60}], x] (* Clark Kimberling, Mar 14 2014 *)
  • PARI
    N=66; q='q+O('q^N); Vec( 1/((1-q)*eta(q^2)) ) \\ Joerg Arndt, Mar 11 2014

Formula

a(n) = A000070(A004526(n)). - Reinhard Zumkeller, Jan 23 2010
G.f.: 1/((1-q)*prod(n>=1, 1-q^(2*n))). [Joerg Arndt, Mar 11 2014]
a(2*k+2) = a(2*k) + A000041(k + 1). - David A. Corneth, May 29 2021
a(n) ~ exp(Pi*sqrt(n/3)) / (2*Pi*sqrt(n)). - Vaclav Kotesovec, Nov 16 2021

Extensions

Edited by N. J. A. Sloane, Dec 29 2007
Prepended a(0)=1, added more terms, Joerg Arndt, Mar 11 2014

A035363 Number of partitions of n into even parts.

Original entry on oeis.org

1, 0, 1, 0, 2, 0, 3, 0, 5, 0, 7, 0, 11, 0, 15, 0, 22, 0, 30, 0, 42, 0, 56, 0, 77, 0, 101, 0, 135, 0, 176, 0, 231, 0, 297, 0, 385, 0, 490, 0, 627, 0, 792, 0, 1002, 0, 1255, 0, 1575, 0, 1958, 0, 2436, 0, 3010, 0, 3718, 0, 4565, 0, 5604, 0, 6842, 0, 8349, 0, 10143, 0, 12310, 0
Offset: 0

Views

Author

Keywords

Comments

Convolved with A036469 = A000070. - Gary W. Adamson, Jun 09 2009
Note that these partitions are located in the head of the last section of the set of partitions of n (see A135010). - Omar E. Pol, Nov 20 2009
Number of symmetric unimodal compositions of n+2 where the maximal part appears twice, see example. Also number of symmetric unimodal compositions of n where the maximal part appears an even number of times. - Joerg Arndt, Jun 11 2013
Number of partitions of n having parts of even multiplicity. These are the conjugates of the partitions from the definition. Example: a(8)=5 because we have [4,4],[3,3,1,1],[2,2,2,2],[2,2,1,1,1,1], and [1,1,1,1,1,1,1,1]. - Emeric Deutsch, Jan 27 2016
From Gus Wiseman, May 22 2021: (Start)
The Heinz numbers of the conjugate partitions described in Emeric Deutsch's comment above are given by A000290.
For n > 1, also the number of integer partitions of n-1 whose only odd part is the smallest. The Heinz numbers of these partitions are given by A341446. For example, the a(2) = 1 through a(14) = 15 partitions (empty columns shown as dots, A..D = 10..13) are:
1 . 3 . 5 . 7 . 9 . B . D
21 41 43 63 65 85
221 61 81 83 A3
421 441 A1 C1
2221 621 443 643
4221 641 661
22221 821 841
4421 A21
6221 4441
42221 6421
222221 8221
44221
62221
422221
2222221
Also the number of integer partitions of n whose greatest part is the sum of all the other parts. The Heinz numbers of these partitions are given by A344415. For example, the a(2) = 1 through a(12) = 11 partitions (empty columns not shown) are:
(11) (22) (33) (44) (55) (66)
(211) (321) (422) (532) (633)
(3111) (431) (541) (642)
(4211) (5221) (651)
(41111) (5311) (6222)
(52111) (6321)
(511111) (6411)
(62211)
(63111)
(621111)
(6111111)
Also the number of integer partitions of n of length n/2. The Heinz numbers of these partitions are given by A340387. For example, the a(2) = 1 through a(14) = 15 partitions (empty columns not shown) are:
(2) (22) (222) (2222) (22222) (222222) (2222222)
(31) (321) (3221) (32221) (322221) (3222221)
(411) (3311) (33211) (332211) (3322211)
(4211) (42211) (333111) (3332111)
(5111) (43111) (422211) (4222211)
(52111) (432111) (4322111)
(61111) (441111) (4331111)
(522111) (4421111)
(531111) (5222111)
(621111) (5321111)
(711111) (5411111)
(6221111)
(6311111)
(7211111)
(8111111)
(End)

Examples

			From _Joerg Arndt_, Jun 11 2013: (Start)
There are a(12)=11 symmetric unimodal compositions of 12+2=14 where the maximal part appears twice:
01:  [ 1 1 1 1 1 2 2 1 1 1 1 1 ]
02:  [ 1 1 1 1 3 3 1 1 1 1 ]
03:  [ 1 1 1 4 4 1 1 1 ]
04:  [ 1 1 2 3 3 2 1 1 ]
05:  [ 1 1 5 5 1 1 ]
06:  [ 1 2 4 4 2 1 ]
07:  [ 1 6 6 1 ]
08:  [ 2 2 3 3 2 2 ]
09:  [ 2 5 5 2 ]
10:  [ 3 4 4 3 ]
11:  [ 7 7 ]
There are a(14)=15 symmetric unimodal compositions of 14 where the maximal part appears an even number of times:
01:  [ 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ]
02:  [ 1 1 1 1 1 2 2 1 1 1 1 1 ]
03:  [ 1 1 1 1 3 3 1 1 1 1 ]
04:  [ 1 1 1 2 2 2 2 1 1 1 ]
05:  [ 1 1 1 4 4 1 1 1 ]
06:  [ 1 1 2 3 3 2 1 1 ]
07:  [ 1 1 5 5 1 1 ]
08:  [ 1 2 2 2 2 2 2 1 ]
09:  [ 1 2 4 4 2 1 ]
10:  [ 1 3 3 3 3 1 ]
11:  [ 1 6 6 1 ]
12:  [ 2 2 3 3 2 2 ]
13:  [ 2 5 5 2 ]
14:  [ 3 4 4 3 ]
15:  [ 7 7 ]
(End)
a(8)=5 because we  have [8], [6,2], [4,4], [4,2,2], and [2,2,2,2]. - _Emeric Deutsch_, Jan 27 2016
From _Gus Wiseman_, May 22 2021: (Start)
The a(0) = 1 through a(12) = 11 partitions into even parts are the following (empty columns shown as dots, A = 10, C = 12). The Heinz numbers of these partitions are given by A066207.
  ()  .  (2)  .  (4)   .  (6)    .  (8)     .  (A)      .  (C)
                 (22)     (42)      (44)       (64)        (66)
                          (222)     (62)       (82)        (84)
                                    (422)      (442)       (A2)
                                    (2222)     (622)       (444)
                                               (4222)      (642)
                                               (22222)     (822)
                                                           (4422)
                                                           (6222)
                                                           (42222)
                                                           (222222)
(End)
		

References

  • Mohammad K. Azarian, A Generalization of the Climbing Stairs Problem, Mathematics and Computer Education, Vol. 31, No. 1, pp. 24-28, Winter 1997. MathEduc Database (Zentralblatt MATH, 1997c.01891).
  • Mohammad K. Azarian, A Generalization of the Climbing Stairs Problem II, Missouri Journal of Mathematical Sciences, Vol. 16, No. 1, Winter 2004, pp. 12-17. Zentralblatt MATH, Zbl 1071.05501.

Crossrefs

Bisection (even part) gives the partition numbers A000041.
Column k=0 of A103919, A264398.
Note: A-numbers of ranking sequences are in parentheses below.
The version for odd instead of even parts is A000009 (A066208).
The version for parts divisible by 3 instead of 2 is A035377.
The strict case is A035457.
The Heinz numbers of these partitions are given by A066207.
The ordered version (compositions) is A077957 prepended by (1,0).
This is column k = 2 of A168021.
The multiplicative version (factorizations) is A340785.
A000569 counts graphical partitions (A320922).
A004526 counts partitions of length 2 (A001358).
A025065 counts palindromic partitions (A265640).
A027187 counts partitions with even length/maximum (A028260/A244990).
A058696 counts partitions of even numbers (A300061).
A067661 counts strict partitions of even length (A030229).
A236913 counts partitions of even length and sum (A340784).
A340601 counts partitions of even rank (A340602).
The following count partitions of even length:
- A096373 cannot be partitioned into strict pairs (A320891).
- A338914 can be partitioned into strict pairs (A320911).
- A338915 cannot be partitioned into distinct pairs (A320892).
- A338916 can be partitioned into distinct pairs (A320912).
- A339559 cannot be partitioned into distinct strict pairs (A320894).
- A339560 can be partitioned into distinct strict pairs (A339561).

Programs

  • Maple
    ZL:= [S, {C = Cycle(B), S = Set(C), E = Set(B), B = Prod(Z,Z)}, unlabelled]: seq(combstruct[count](ZL, size=n), n=0..69); # Zerinvary Lajos, Mar 26 2008
    g := 1/mul(1-x^(2*k), k = 1 .. 100): gser := series(g, x = 0, 80): seq(coeff(gser, x, n), n = 0 .. 78); # Emeric Deutsch, Jan 27 2016
    # Using the function EULER from Transforms (see link at the bottom of the page).
    [1,op(EULER([0,1,seq(irem(n,2),n=0..66)]))]; # Peter Luschny, Aug 19 2020
    # next Maple program:
    a:= n-> `if`(n::odd, 0, combinat[numbpart](n/2)):
    seq(a(n), n=0..84);  # Alois P. Heinz, Jun 22 2021
  • Mathematica
    nmax = 50; s = Range[2, nmax, 2];
    Table[Count[IntegerPartitions@n, x_ /; SubsetQ[s, x]], {n, 0, nmax}] (* Robert Price, Aug 05 2020 *)
  • Python
    from sympy import npartitions
    def A035363(n): return 0 if n&1 else npartitions(n>>1) # Chai Wah Wu, Sep 23 2023

Formula

G.f.: Product_{k even} 1/(1 - x^k).
Convolution with the number of partitions into distinct parts (A000009, which is also number of partitions into odd parts) gives the number of partitions (A000041). - Franklin T. Adams-Watters, Jan 06 2006
If n is even then a(n)=A000041(n/2) otherwise a(n)=0. - Omar E. Pol, Nov 20 2009
G.f.: 1 + x^2*(1 - G(0))/(1-x^2) where G(k) = 1 - 1/(1-x^(2*k+2))/(1-x^2/(x^2-1/G(k+1) )); (recursively defined continued fraction). - Sergei N. Gladkovskii, Jan 23 2013
a(n) = A096441(n) - A000009(n), n >= 1. - Omar E. Pol, Aug 16 2013
G.f.: exp(Sum_{k>=1} x^(2*k)/(k*(1 - x^(2*k)))). - Ilya Gutkovskiy, Aug 13 2018

A339846 Number of even-length factorizations of n into factors > 1.

Original entry on oeis.org

1, 0, 0, 1, 0, 1, 0, 1, 1, 1, 0, 2, 0, 1, 1, 3, 0, 2, 0, 2, 1, 1, 0, 4, 1, 1, 1, 2, 0, 3, 0, 3, 1, 1, 1, 5, 0, 1, 1, 4, 0, 3, 0, 2, 2, 1, 0, 6, 1, 2, 1, 2, 0, 4, 1, 4, 1, 1, 0, 6, 0, 1, 2, 6, 1, 3, 0, 2, 1, 3, 0, 8, 0, 1, 2, 2, 1, 3, 0, 6, 3, 1, 0, 6, 1, 1, 1, 4, 0, 6, 1, 2, 1, 1, 1, 10, 0, 2, 2, 5, 0, 3, 0, 4, 3
Offset: 1

Views

Author

Gus Wiseman, Dec 28 2020

Keywords

Examples

			The a(n) factorizations for n = 12, 16, 24, 36, 48, 72, 96, 120:
  2*6  2*8      3*8      4*9      6*8      8*9      2*48         2*60
  3*4  4*4      4*6      6*6      2*24     2*36     3*32         3*40
       2*2*2*2  2*12     2*18     3*16     3*24     4*24         4*30
                2*2*2*3  3*12     4*12     4*18     6*16         5*24
                         2*2*3*3  2*2*2*6  6*12     8*12         6*20
                                  2*2*3*4  2*2*2*9  2*2*3*8      8*15
                                           2*2*3*6  2*2*4*6      10*12
                                           2*3*3*4  2*3*4*4      2*2*5*6
                                                    2*2*2*12     2*3*4*5
                                                    2*2*2*2*2*3  2*2*2*15
                                                                 2*2*3*10
		

Crossrefs

The case of set partitions (or n squarefree) is A024430.
The case of partitions (or prime powers) is A027187.
The ordered version is A174725, odd: A174726.
The odd-length factorizations are counted by A339890.
A001055 counts factorizations, with strict case A045778.
A001358 lists semiprimes, with squarefree case A006881.
A027187 counts partitions of even length, ranked by A028260.
A058696 counts partitions of even numbers, ranked by A300061.
A316439 counts factorizations by product and length.
A340102 counts odd-length factorizations into odd factors.

Programs

  • Maple
    g:= proc(n, k, t) option remember; `if`(n>k, 0, t)+
          `if`(isprime(n), 0, add(`if`(d>k, 0, g(n/d, d, 1-t)),
              d=numtheory[divisors](n) minus {1, n}))
        end:
    a:= n-> `if`(n=1, 1, g(n$2, 0)):
    seq(a(n), n=1..100);  # Alois P. Heinz, Dec 30 2020
  • Mathematica
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    Table[Length[Select[facs[n],EvenQ@Length[#]&]],{n,100}]
  • PARI
    A339846(n, m=n, e=1) = if(1==n, e, sumdiv(n, d, if((d>1)&&(d<=m), A339846(n/d, d, 1-e)))); \\ Antti Karttunen, Oct 22 2023

Formula

a(n) + A339890(n) = A001055(n).

Extensions

Data section extended up to a(105) by Antti Karttunen, Oct 22 2023

A000097 Number of partitions of n if there are two kinds of 1's and two kinds of 2's.

Original entry on oeis.org

1, 2, 5, 9, 17, 28, 47, 73, 114, 170, 253, 365, 525, 738, 1033, 1422, 1948, 2634, 3545, 4721, 6259, 8227, 10767, 13990, 18105, 23286, 29837, 38028, 48297, 61053, 76926, 96524, 120746, 150487, 187019, 231643, 286152, 352413, 432937, 530383, 648245
Offset: 0

Views

Author

Keywords

Comments

Also number of partitions of 2*n with exactly 2 odd parts (offset 1). - Vladeta Jovovic, Jan 12 2005
Also number of transitions from one partition of n+2 to another, where a transition consists of replacing any two parts with their sum. Remove all 1' and 2' from the partition, replacing them with ((number of 2') + 1) and ((number of 1') + (number of 2') + 1); these are the two parts being summed. Number of partitions of n into parts of 2 kinds with at most 2 parts of the second kind, or of n+2 into parts of 2 kinds with exactly 2 parts of the second kind. - Franklin T. Adams-Watters, Mar 20 2006
From Christian Gutschwager (gutschwager(AT)math.uni-hannover.de), Feb 10 2010: (Start)
a(n) is also the number of pairs of partitions of n+2 which differ by only one box (for bijection see the first Gutschwager link).
a(n) is also the number of partitions of n with two parts marked.
a(n) is also the number of partitions of n+1 with two different parts marked. (End)
Convolution of A000041 and A008619. - Vaclav Kotesovec, Aug 18 2015
a(n) = P(/2,n), a particular case of P(/k,n) defined as follows: P(/0,n) = A000041(n) and P(/k,n) = P(/k-1, n) + P(/k-1,n-k) + P(/k-1, n-2k) + ... Also, P(/k,n) = the convolution of A000041 and the partitions of n with exactly k parts, and g.f. P(/k,n) = (g.f. for P(n)) * 1/(1-x)...(1-x^k). - Gregory L. Simay, Mar 22 2018
a(n) is also the sum of binomial(D(p),2) in partitions p of (n+3), where D(p)= number of different sizes of parts in p. - Emily Anible, Apr 03 2018
Also partitions of 2*(n+1) with alternating sum 2. Also partitions of 2*(n+1) with reverse-alternating sum -2 or 2. - Gus Wiseman, Jun 21 2021
Define the distance graph of the partitions of n using the distance function in A366156 as follows: two vertices (partitions) share an edge if and only if the distance between the vertices is 2. Then a(n) is the number of edges in the distance graph of the partitions of n. - Clark Kimberling, Oct 12 2023

Examples

			a(3) = 9 because we have 3, 2+1, 2+1', 2'+1, 2'+1', 1+1+1, 1+1+1', 1+1'+1' and 1'+1'+1'.
From _Gus Wiseman_, Jun 22 2021: (Start)
The a(0) = 1 through a(4) = 9 partitions of 2*(n+1) with exactly 2 odd parts:
  (1,1)  (3,1)    (3,3)      (5,3)
         (2,1,1)  (5,1)      (7,1)
                  (3,2,1)    (3,3,2)
                  (4,1,1)    (4,3,1)
                  (2,2,1,1)  (5,2,1)
                             (6,1,1)
                             (3,2,2,1)
                             (4,2,1,1)
                             (2,2,2,1,1)
The a(0) = 1 through a(4) = 9 partitions of 2*(n+1) with alternating sum 2:
  (2)  (3,1)    (4,2)        (5,3)
       (2,1,1)  (2,2,2)      (3,3,2)
                (3,2,1)      (4,3,1)
                (3,1,1,1)    (3,2,2,1)
                (2,1,1,1,1)  (4,2,1,1)
                             (2,2,2,1,1)
                             (3,2,1,1,1)
                             (3,1,1,1,1,1)
                             (2,1,1,1,1,1,1)
(End)
		

References

  • H. Gupta et al., Tables of Partitions. Royal Society Mathematical Tables, Vol. 4, Cambridge Univ. Press, 1958, p. 90.
  • J. Riordan, Combinatorial Identities, Wiley, 1968, p. 199.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

First differences are in A024786.
Third column of Riordan triangle A008951 and of triangle A103923.
The case of reverse-alternating sum 1 or alternating sum 0 is A000041.
The case of reverse-alternating sum -1 or alternating sum 1 is A000070.
The normal case appears to be A004526 or A065033.
The strict case is A096914.
The case of reverse-alternating sum 2 is A120452.
The case of reverse-alternating sum -2 is A344741.
A001700 counts compositions with alternating sum 2.
A035363 counts partitions into even parts.
A058696 counts partitions of 2n.
A103919 counts partitions by sum and alternating sum (reverse: A344612).
A124754 gives alternating sums of standard compositions (reverse: A344618).
A316524 is the alternating sum of the prime indices of n (reverse: A344616).
A344610 counts partitions by sum and positive reverse-alternating sum.
A344611 counts partitions of 2n with reverse-alternating sum >= 0.
Shift of A093695.

Programs

  • Maple
    with(numtheory): etr:= proc(p) local b; b:=proc(n) option remember; local d,j; if n=0 then 1 else add(add(d*p(d), d=divisors(j)) *b(n-j), j=1..n)/n fi end end: a:= etr(n->`if`(n<3,2,1)): seq(a(n), n=0..40); # Alois P. Heinz, Sep 08 2008
  • Mathematica
    CoefficientList[Series[1/((1 - x) (1 - x^2) Product[1 - x^k, {k, 1, 100}]), {x, 0, 100}], x] (* Ben Branman, Mar 07 2012 *)
    etr[p_] := Module[{b}, b[n_] := b[n] = If[n == 0, 1, Sum[Sum[d*p[d], {d, Divisors[j]}]*b[n - j], {j, 1, n}]/n]; b]; a = etr[If[# < 3, 2, 1]&]; Table[a[n], {n, 0, 40}] (* Jean-François Alcover, Apr 09 2014, after Alois P. Heinz *)
    (1/((1 - x) (1 - x^2) QPochhammer[x]) + O[x]^50)[[3]] (* Vladimir Reshetnikov, Nov 22 2016 *)
    Table[Length@IntegerPartitions[n,All,Join[{1,2},Range[n]]],{n,0,15}] (* Robert Price, Jul 28 2020 and Jun 21 2021 *)
    T[n_, 0] := PartitionsP[n];
    T[n_, m_] /; (n >= m (m + 1)/2) := T[n, m] = T[n - m, m - 1] + T[n - m, m];
    T[, ] = 0;
    a[n_] := T[n + 3, 2];
    Table[a[n], {n, 0, 60}] (* Jean-François Alcover, May 30 2021 *)
    ats[y_]:=Sum[(-1)^(i-1)*y[[i]],{i,Length[y]}];Table[Length[Select[IntegerPartitions[n],ats[#]==2&]],{n,0,30,2}] (* Gus Wiseman, Jun 21 2021 *)
  • PARI
    my(x = 'x + O('x^66)); Vec( 1/((1-x)*(1-x^2)*eta(x)) ) \\ Joerg Arndt, Apr 29 2013

Formula

Euler transform of 2 2 1 1 1 1 1...
G.f.: 1/( (1-x) * (1-x^2) * Product_{k>=1} (1-x^k) ).
a(n) = Sum_{j=0..floor(n/2)} A000070(n-2*j), n>=0.
a(n) = A014153(n)/2 + A087787(n)/4 + A000070(n)/4. - Vaclav Kotesovec, Nov 05 2016
a(n) ~ sqrt(3) * exp(Pi*sqrt(2*n/3)) / (4*Pi^2) * (1 + 35*Pi/(24*sqrt(6*n))). - Vaclav Kotesovec, Aug 18 2015, extended Nov 05 2016
a(n) = A120452(n) + A344741(n). - Gus Wiseman, Jun 21 2021

Extensions

More terms from Pab Ter (pabrlos(AT)yahoo.com), May 04 2004
Edited by Emeric Deutsch, Mar 23 2005
More terms from Franklin T. Adams-Watters, Mar 20 2006
Edited by Charles R Greathouse IV, Apr 20 2010

A058695 Number of ways to partition 2n+1 into positive integers.

Original entry on oeis.org

1, 3, 7, 15, 30, 56, 101, 176, 297, 490, 792, 1255, 1958, 3010, 4565, 6842, 10143, 14883, 21637, 31185, 44583, 63261, 89134, 124754, 173525, 239943, 329931, 451276, 614154, 831820, 1121505, 1505499, 2012558, 2679689, 3554345, 4697205, 6185689, 8118264, 10619863
Offset: 0

Views

Author

N. J. A. Sloane, Dec 31 2000

Keywords

Comments

A bisection of A000041, the other one is A058696.
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700). - Michael Somos, Feb 16 2014
a(n) is the number of partitions of 3n-1 having n as a part, for n >=1. Also, a(n+1) is the number of partitions of 3n having n as a part, for n >= 1. - Clark Kimberling, Mar 02 2014

Examples

			G.f. = 1 + 3*x + 7*x^2 + 15*x^3 + 30*x^4 + 56*x^5 + 101*x^6 + 176*x^7 + 297*x^8 + ...
G.f. = q^23 + 3*q^71 + 7*q^119 + 15*q^167 + 30*q^215 + 56*q^263 + 101*q^311 + ...
		

Crossrefs

Programs

  • Maple
    a:= n-> combinat[numbpart](2*n+1):
    seq(a(n), n=0..42);  # Alois P. Heinz, Jan 29 2020
  • Mathematica
    nn=100;Table[CoefficientList[Series[Product[1/(1-x^i),{i,1,nn}],{x,0,nn}],x][[2i]],{i,1,nn/2}] (* Geoffrey Critzer, Sep 28 2013 *)
    (* also *)
    Table[PartitionsP[2 n + 1], {n, 0, 40}] (* Clark Kimberling, Mar 02 2014 *)
    (* also *)
    Table[Count[IntegerPartitions[3 n - 1], p_ /; MemberQ[p, n]], {n, 20}]   (* Clark Kimberling, Mar 02 2014 *)
  • PARI
    {a(n) = if( n<0, 0, polcoeff( 1 / eta(x + O(x^(2*n + 2))), 2*n + 1))}; /* Michael Somos, Apr 25 2003 */
    
  • PARI
    a(n) = numbpart(2*n+1); \\ Michel Marcus, Sep 28 2013

Formula

a(n) = A000041(2*n + 1).
Euler transform of period 16 sequence [ 3, 1, 2, 2, 2, 2, 3, 1, 3, 2, 2, 2, 2, 1, 3, 1, ...]. - Michael Somos, Apr 25 2003
G.f.: (Sum_{k>=0} x^A074377(k)) / (Product_{k>0} (1 - x^k))^2. - Michael Somos, Apr 25 2003
Expansion of f(x^1, x^7) / f(-x)^2 in powers of x where f() is a Ramanujan theta function. - Michael Somos, Feb 16 2014
Convolution of A000041 and A078408. - Michael Somos, Feb 16 2014

A116406 Expansion of ((1 + x - 2x^2) + (1+x)*sqrt(1-4x^2))/(2(1-4x^2)).

Original entry on oeis.org

1, 1, 2, 3, 7, 11, 26, 42, 99, 163, 382, 638, 1486, 2510, 5812, 9908, 22819, 39203, 89846, 155382, 354522, 616666, 1401292, 2449868, 5546382, 9740686, 21977516, 38754732, 87167164, 154276028, 345994216, 614429672, 1374282019, 2448023843
Offset: 0

Views

Author

Paul Barry, Feb 13 2006

Keywords

Comments

Interleaving of A114121 and A032443. Row sums of A116405. Binomial transform is A116409.
Appears to be the number of n-digit binary numbers not having more zeros than ones; equivalently, the number of unrestricted Dyck paths of length n not going below the axis. - Ralf Stephan, Mar 25 2008
From Gus Wiseman, Jun 20 2021: (Start)
Also the number compositions of n with alternating sum >= 0, where the alternating sum of a sequence (y_1,...,y_k) is Sum_i (-1)^(i-1) y_i. The a(0) = 1 through a(5) = 11 compositions are:
() (1) (2) (3) (4) (5)
(11) (21) (22) (32)
(111) (31) (41)
(112) (113)
(121) (122)
(211) (212)
(1111) (221)
(311)
(1121)
(2111)
(11111)
(End)
From J. Stauduhar, Jan 14 2022: (Start)
Also, for n >= 2, first differences of partial row sums of Pascal's triangle. The first ceiling(n/2)+1 elements of rows n=0 to n=4 in Pascal's triangle are:
1
1 1
1 2
1 3 3
1 4 6
...
The cumulative sums of these partial rows form the sequence 1,3,6,13,24,..., and its first differences are a(2),a(3),a(4),... in this sequence.
(End)

Crossrefs

The alternating sum = 0 case is A001700 or A088218.
The alternating sum > 0 case appears to be A027306.
The bisections are A032443 (odd) and A114121 (even).
The alternating sum <= 0 version is A058622.
The alternating sum < 0 version is A294175.
The restriction to reversed partitions is A344607.
A103919 counts partitions by sum and alternating sum (reverse: A344612).
A124754 gives the alternating sum of standard compositions.
A344610 counts partitions by sum and positive reverse-alternating sum.
A344616 lists the alternating sums of partitions by Heinz number.

Programs

  • Mathematica
    CoefficientList[Series[((1+x-2x^2)+(1+x)Sqrt[1-4x^2])/(2(1-4x^2)),{x,0,40}],x] (* Harvey P. Dale, Aug 16 2012 *)
    ats[y_]:=Sum[(-1)^(i-1)*y[[i]],{i,Length[y]}];Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],ats[#]>=0&]],{n,0,15}] (* Gus Wiseman, Jun 20 2021 *)

Formula

a(n) = A114121(n/2)*(1+(-1)^n)/2 + A032443((n-1)/2)*(1-(-1)^n)/2.
a(n) = Sum_{k=0..floor(n/2)} binomial(n-1,k). - Paul Barry, Oct 06 2007
Conjecture: n*(n-3)*a(n) +2*(-n^2+4*n-2)*a(n-1) -4*(n-2)^2*a(n-2) +8*(n-2)*(n-3)*a(n-3)=0. - R. J. Mathar, Nov 28 2014
a(n) ~ 2^(n-2) * (1 + (3+(-1)^n)/sqrt(2*Pi*n)). - Vaclav Kotesovec, May 30 2016
a(n) = 2^(n-1) - A294175(n). - Gus Wiseman, Jun 27 2021

A067661 Number of partitions of n into distinct parts such that number of parts is even.

Original entry on oeis.org

1, 0, 0, 1, 1, 2, 2, 3, 3, 4, 5, 6, 7, 9, 11, 13, 16, 19, 23, 27, 32, 38, 45, 52, 61, 71, 83, 96, 111, 128, 148, 170, 195, 224, 256, 292, 334, 380, 432, 491, 556, 630, 713, 805, 908, 1024, 1152, 1295, 1455, 1632, 1829, 2049, 2291, 2560, 2859, 3189, 3554, 3959, 4404
Offset: 0

Views

Author

Naohiro Nomoto, Feb 23 2002

Keywords

Comments

Ramanujan theta functions: phi(q) (A000122), chi(q) (A000700).

Examples

			G.f. = 1 + x^3 + x^4 + 2*x^5 + 2*x^6 + 3*x^7 + 3*x^8 + 4*x^9 + 5*x^10 + ...
From _Gus Wiseman_, Jan 08 2021: (Start)
The a(3) = 1 through a(14) = 11 partitions (A-D = 10..13):
  21   31   32   42   43   53   54   64     65     75     76     86
            41   51   52   62   63   73     74     84     85     95
                      61   71   72   82     83     93     94     A4
                                81   91     92     A2     A3     B3
                                     4321   A1     B1     B2     C2
                                            5321   5421   C1     D1
                                                   6321   5431   5432
                                                          6421   6431
                                                          7321   6521
                                                                 7421
                                                                 8321
(End)
		

References

  • B. C. Berndt, Ramanujan's Notebooks Part III, Springer-Verlag, see p. 18 Entry 9 Corollary (2).

Crossrefs

Dominates A000009.
Numbers with these strict partitions as binary indices are A001969.
The non-strict case is A027187, ranked by A028260.
The Heinz numbers of these partitions are A030229.
The odd version is A067659, ranked by A030059.
The version for rank is A117192, with positive case A101708.
Other cases of even length:
- A024430 counts set partitions of even length.
- A034008 counts compositions of even length.
- A052841 counts ordered set partitions of even length.
- A174725 counts ordered factorizations of even length.
- A332305 counts strict compositions of even length
- A339846 counts factorizations of even length.
A008289 counts strict partitions by sum and length.
A026805 counts partitions whose least part is even.

Programs

  • Maple
    b:= proc(n, i, t) option remember; `if`(n>i*(i+1)/2, 0,
          `if`(n=0, t, add(b(n-i*j, i-1, abs(t-j)), j=0..min(n/i, 1))))
        end:
    a:= n-> b(n$2, 1):
    seq(a(n), n=0..80);  # Alois P. Heinz, Apr 01 2014
  • Mathematica
    b[n_, i_, t_] := b[n, i, t] = If[n > i*(i + 1)/2, 0, If[n == 0, t, Sum[b[n - i*j, i - 1, Abs[t - j]], {j, 0, Min[n/i, 1]}]]]; a[n_] := b[n, n, 1]; Table[a[n], {n, 0, 80}] (* Jean-François Alcover, Jan 16 2015, after Alois P. Heinz *)
    a[ n_] := SeriesCoefficient[ (QPochhammer[ -x, x] + QPochhammer[ x]) / 2, {x, 0, n}]; (* Michael Somos, May 06 2015 *)
    Table[Length[Select[IntegerPartitions[n],UnsameQ@@#&&EvenQ[Length[#]]&]],{n,0,30}] (* Gus Wiseman, Jan 08 2021 *)
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( (eta(x^2 + A) / eta(x + A) + eta(x + A)) / 2, n))}; /* Michael Somos, Feb 14 2006 */
    
  • PARI
    N=66;  q='q+O('q^N);  S=1+2*sqrtint(N);
    gf=sum(n=0, S, (n%2==0) * q^(n*(n+1)/2) / prod(k=1, n, 1-q^k ) );
    Vec(gf)  \\ Joerg Arndt, Apr 01 2014

Formula

G.f.: A(q) = Sum_{n >= 0} a(n) q^n = 1 + q^3 + q^4 + 2 q^5 + 2 q^6 + 3 q^7 + ... = Sum_{n >= 0} q^(n(2n+1))/(q; q){2n} [_Bill Gosper, Jun 25 2005]
Also, let B(q) = Sum_{n >= 0} A067659(n) q^n = q + q^2 + q^3 + q^4 + q^5 + 2 q^6 + ... Then B(q) = Sum_{n >= 0} q^((n+1)(2n+1))/(q; q)_{2n+1}.
Also we have the following identity involving 2 X 2 matrices:
Prod_{k >= 1} [ 1, q^k; q^k, 1 ] = [ A(q), B(q); B(q), A(q) ] [Bill Gosper, Jun 25 2005]
a(n) = (A000009(n)+A010815(n))/2. - Vladeta Jovovic, Feb 24 2002
Expansion of (1 + phi(-x)) / (2*chi(-x)) in powers of x where phi(), chi() are Ramanujan theta functions. - Michael Somos, Feb 14 2006
a(n) + A067659(n) = A000009(n). - R. J. Mathar, Jun 18 2016
a(n) ~ exp(Pi*sqrt(n/3)) / (8*3^(1/4)*n^(3/4)). - Vaclav Kotesovec, May 24 2018
A000009(n) = a(n) + A067659(n). - Gus Wiseman, Jan 09 2021
From Peter Bala, Feb 05 2021: (Start)
G.f.: A(x) = (1/2)*((Product_{n >= 0} 1 + x^n) + (Product_{n >= 0} 1 - x^n)).
Let B(x) denote the g.f. of A067659. Then
A(x)^2 - B(x)^2 = A(x^2) - B(x^2) = Product_{n >= 1} 1 - x^(2*n) = Sum_{n in Z} (-1)^n*x^(n*(3*n+1)).
A(x) + B(x) is the g.f. of A000009.
1/(A(x) - B(x)) is the g.f. of A000041.
(A(x) + B(x))/(A(x) - B(x)) is the g.f. of A015128.
A(x)/(A(x) + B(x)) = Sum_{n >= 0} (-1)^n*x^n^2 = (1 + theta_3(-x))/2.
B(x)/(A(x) - B(x)) is the g.f. of A014968.
A(x)/(A(x^2) - B(x^2)) is the g.f. of A027187.
B(x)/(A(x^2) - B(x^2)) is the g.f. of A027193. (End)

A236913 Number of partitions of 2n of type EE (see Comments).

Original entry on oeis.org

1, 1, 3, 6, 12, 22, 40, 69, 118, 195, 317, 505, 793, 1224, 1867, 2811, 4186, 6168, 9005, 13026, 18692, 26613, 37619, 52815, 73680, 102162, 140853, 193144, 263490, 357699, 483338, 650196, 870953, 1161916, 1544048, 2044188, 2696627, 3545015, 4644850, 6066425
Offset: 0

Views

Author

Clark Kimberling, Feb 01 2014

Keywords

Comments

The partitions of n are partitioned into four types:
EO, even # of odd parts and odd # of even parts, A236559;
OE, odd # of odd parts and even # of even parts, A160786;
EE, even # of odd parts and even # of even parts, A236913;
OO, odd # of odd parts and odd # of even parts, A236914.
A236559 and A160786 are the bisections of A027193;
A236913 and A236914 are the bisections of A027187.

Examples

			The partitions of 4 of type EE are [3,1], [2,2], [1,1,1,1], so that a(2) = 3.
type/k . 1 .. 2 .. 3 .. 4 .. 5 .. 6 .. 7 .. 8 ... 9 ... 10 .. 11
EO ..... 0 .. 1 .. 0 .. 2 .. 0 .. 5 .. 0 .. 10 .. 0 ... 20 .. 0
OE ..... 1 .. 0 .. 2 .. 0 .. 4 .. 0 .. 8 .. 0 ... 16 .. 0 ... 29
EE ..... 0 .. 1 .. 0 .. 3 .. 0 .. 6 .. 0 .. 12 .. 0 ... 22 .. 0
OO ..... 0 .. 0 .. 1 .. 0 .. 3 .. 0 .. 7 .. 0 ... 14 .. 0 ... 27
From _Gus Wiseman_, Feb 09 2021: (Start)
This sequence counts even-length partitions of even numbers, which have Heinz numbers given by A340784. For example, the a(0) = 1 through a(4) = 12 partitions are:
  ()  (11)  (22)    (33)      (44)
            (31)    (42)      (53)
            (1111)  (51)      (62)
                    (2211)    (71)
                    (3111)    (2222)
                    (111111)  (3221)
                              (3311)
                              (4211)
                              (5111)
                              (221111)
                              (311111)
                              (11111111)
(End)
		

Crossrefs

Note: A-numbers of ranking sequences are in parentheses below.
The ordered version is A000302.
The case of odd-length partitions of odd numbers is A160786 (A340931).
The Heinz numbers of these partitions are (A340784).
A027187 counts partitions of even length/maximum (A028260/A244990).
A034008 counts compositions of even length.
A035363 counts partitions into even parts (A066207).
A047993 counts balanced partitions (A106529).
A058695 counts partitions of odd numbers (A300063).
A058696 counts partitions of even numbers (A300061).
A067661 counts strict partitions of even length (A030229).
A072233 counts partitions by sum and length.
A339846 counts factorizations of even length.
A340601 counts partitions of even rank (A340602).
A340785 counts factorizations into even factors.
A340786 counts even-length factorizations into even factors.

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0, [1, 0$3],
          `if`(i<1, [0$4], b(n, i-1)+`if`(i>n, [0$4], (p->
          `if`(irem(i, 2)=0, [p[3], p[4], p[1], p[2]],
              [p[2], p[1], p[4], p[3]]))(b(n-i, i)))))
        end:
    a:= n-> b(2*n$2)[1]:
    seq(a(n), n=0..40);  # Alois P. Heinz, Feb 16 2014
  • Mathematica
    z = 25; m1 = Map[Length[Select[Map[{Count[#, True], Count[#, False]} &,  OddQ[IntegerPartitions[2 #]]], EvenQ[(*Odd*)First[#]] && OddQ[(*Even*)Last[#]] &]] &, Range[z]]; m2 = Map[Length[Select[Map[{Count[#, True], Count[#, False]} &,      OddQ[IntegerPartitions[2 # - 1]]], OddQ[(*Odd*)First[#]] && EvenQ[(*Even*)Last[#]] &]] &, Range[z]]; m3 = Map[Length[Select[Map[{Count[#, True], Count[#, False]} &,
    OddQ[IntegerPartitions[2 #]]], EvenQ[(*Odd*)First[#]] && EvenQ[(*Even*)Last[#]] &]] &, Range[z]] ; m4 = Map[Length[Select[Map[{Count[#, True], Count[#, False]} &,
    OddQ[IntegerPartitions[2 # - 1]]], OddQ[(*Odd*)First[#]] && OddQ[(*Even*)Last[#]] &]] &, Range[z]];
    m1 (* A236559, type EO*)
    m2 (* A160786, type OE*)
    m3 (* A236913, type EE*)
    m4 (* A236914, type OO*)
    (* Peter J. C. Moses, Feb 03 2014 *)
    b[n_, i_] := b[n, i] = If[n == 0, {1, 0, 0, 0}, If[i < 1, {0, 0, 0, 0}, b[n, i - 1] + If[i > n, {0, 0, 0, 0}, Function[p, If[Mod[i, 2] == 0, p[[{3, 4, 1, 2}]], p[[{2, 1, 4, 3}]]]][b[n - i, i]]]]]; a[n_] := b[2*n, 2*n][[1]]; Table[a[n], {n, 0, 40}] (* Jean-François Alcover, Oct 27 2015, after Alois P. Heinz *)
    Table[Length[Select[IntegerPartitions[2n],EvenQ[Length[#]]&]],{n,0,15}] (* Gus Wiseman, Feb 09 2021 *)

Extensions

More terms from Alois P. Heinz, Feb 16 2014
Showing 1-10 of 84 results. Next