cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 52 results. Next

A000009 Expansion of Product_{m >= 1} (1 + x^m); number of partitions of n into distinct parts; number of partitions of n into odd parts.

Original entry on oeis.org

1, 1, 1, 2, 2, 3, 4, 5, 6, 8, 10, 12, 15, 18, 22, 27, 32, 38, 46, 54, 64, 76, 89, 104, 122, 142, 165, 192, 222, 256, 296, 340, 390, 448, 512, 585, 668, 760, 864, 982, 1113, 1260, 1426, 1610, 1816, 2048, 2304, 2590, 2910, 3264, 3658, 4097, 4582, 5120, 5718, 6378
Offset: 0

Views

Author

Keywords

Comments

Partitions into distinct parts are sometimes called "strict partitions".
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
The result that number of partitions of n into distinct parts = number of partitions of n into odd parts is due to Euler.
Bijection: given n = L1* 1 + L2*3 + L3*5 + L7*7 + ..., a partition into odd parts, write each Li in binary, Li = 2^a1 + 2^a2 + 2^a3 + ... where the aj's are all different, then expand n = (2^a1 * 1 + ...)*1 + ... by removing the brackets and we get a partition into distinct parts. For the reverse operation, just keep splitting any even number into halves until no evens remain.
Euler transform of period 2 sequence [1,0,1,0,...]. - Michael Somos, Dec 16 2002
Number of different partial sums 1+[1,2]+[1,3]+[1,4]+..., where [1,x] indicates a choice. E.g., a(6)=4, as we can write 1+1+1+1+1+1, 1+2+3, 1+2+1+1+1, 1+1+3+1. - Jon Perry, Dec 31 2003
a(n) is the sum of the number of partitions of x_j into at most j parts, where j is the index for the j-th triangular number and n-T(j)=x_j. For example; a(12)=partitions into <= 4 parts of 12-T(4)=2 + partitions into <= 3 parts of 12-T(3)=6 + partitions into <= 2 parts of 12-T(2)=9 + partitions into 1 part of 12-T(1)=11 = (2)(11) + (6)(51)(42)(411)(33)(321)(222) + (9)(81)(72)(63)(54)+(11) = 2+7+5+1 = 15. - Jon Perry, Jan 13 2004
Number of partitions of n where if k is the largest part, all parts 1..k are present. - Jon Perry, Sep 21 2005
Jack Grahl and Franklin T. Adams-Watters prove this claim of Jon Perry's by observing that the Ferrers dual of a "gapless" partition is guaranteed to have distinct parts; since the Ferrers dual is an involution, this establishes a bijection between the two sets of partitions. - Allan C. Wechsler, Sep 28 2021
The number of connected threshold graphs having n edges. - Michael D. Barrus (mbarrus2(AT)uiuc.edu), Jul 12 2007
Starting with offset 1 = row sums of triangle A146061 and the INVERT transform of A000700 starting: (1, 0, 1, -1, 1, -1, 1, -2, 2, -2, 2, -3, 3, -3, 4, -5, ...). - Gary W. Adamson, Oct 26 2008
Number of partitions of n in which the largest part occurs an odd number of times and all other parts occur an even number of times. (Such partitions are the duals of the partitions with odd parts.) - David Wasserman, Mar 04 2009
Equals A035363 convolved with A010054. The convolution square of A000009 = A022567 = A000041 convolved with A010054. A000041 = A000009 convolved with A035363. - Gary W. Adamson, Jun 11 2009
Considering all partitions of n into distinct parts: there are A140207(n) partitions of maximal size which is A003056(n), and A051162(n) is the greatest number occurring in these partitions. - Reinhard Zumkeller, Jun 13 2009
Equals left border of triangle A091602 starting with offset 1. - Gary W. Adamson, Mar 13 2010
Number of symmetric unimodal compositions of n+1 where the maximal part appears once. Also number of symmetric unimodal compositions of n where the maximal part appears an odd number of times. - Joerg Arndt, Jun 11 2013
Because for these partitions the exponents of the parts 1, 2, ... are either 0 or 1 (j^0 meaning that part j is absent) one could call these partitions also 'fermionic partitions'. The parts are the levels, that is the positive integers, and the occupation number is either 0 or 1 (like Pauli's exclusion principle). The 'fermionic states' are denoted by these partitions of n. - Wolfdieter Lang, May 14 2014
The set of partitions containing only odd parts forms a monoid under the product described in comments to A047993. - Richard Locke Peterson, Aug 16 2018
Ewell (1973) gives a number of recurrences. - N. J. A. Sloane, Jan 14 2020
a(n) equals the number of permutations p of the set {1,2,...,n+1}, written in one line notation as p = p_1p_2...p_(n+1), satisfying p_(i+1) - p_i <= 1 for 1 <= i <= n, (i.e., those permutations that, when read from left to right, never increase by more than 1) whose major index maj(p) := Sum_{p_i > p_(i+1)} i equals n. For example, of the 16 permutations on 5 letters satisfying p_(i+1) - p_i <= 1, 1 <= i <= 4, there are exactly two permutations whose major index is 4, namely, 5 3 4 1 2 and 2 3 4 5 1. Hence a(4) = 2. See the Bala link in A007318 for a proof. - Peter Bala, Mar 30 2022
Conjecture: Each positive integer n can be written as a_1 + ... + a_k, where a_1,...,a_k are strict partition numbers (i.e., terms of the current sequence) with no one dividing another. This has been verified for n = 1..1350. - Zhi-Wei Sun, Apr 14 2023
Conjecture: For each integer n > 7, a(n) divides none of p(n), p(n) - 1 and p(n) + 1, where p(n) is the number of partitions of n given by A000041. This has been verified for n up to 10^5. - Zhi-Wei Sun, May 20 2023 [Verified for n <= 2*10^6. - Vaclav Kotesovec, May 23 2023]
The g.f. Product_{k >= 0} 1 + x^k = Product_{k >= 0} 1 - x^k + 2*x^k == Product_{k >= 0} 1 - x^k == Sum_{k in Z} (-1)^k*x^(k*(3*k-1)/2) (mod 2) by Euler's pentagonal number theorem. It follows that a(n) is odd iff n = k*(3*k - 1)/2 for some integer k, i.e., iff n is a generalized pentagonal number A001318. - Peter Bala, Jan 07 2025

Examples

			G.f. = 1 + x + x^2 + 2*x^3 + 2*x^4 + 3*x^5 + 4*x^6 + 5*x^7 + 6*x^8 + 8*x^9 + ...
G.f. = q + q^25 + q^49 + 2*q^73 + 2*q^97 + 3*q^121 + 4*q^145 + 5*q^169 + ...
The partitions of n into distinct parts (see A118457) for small n are:
  1: 1
  2: 2
  3: 3, 21
  4: 4, 31
  5: 5, 41, 32
  6: 6, 51, 42, 321
  7: 7, 61, 52, 43, 421
  8: 8, 71, 62, 53, 521, 431
  ...
From _Reinhard Zumkeller_, Jun 13 2009: (Start)
a(8)=6, A140207(8)=#{5+2+1,4+3+1}=2, A003056(8)=3, A051162(8)=5;
a(9)=8, A140207(9)=#{6+2+1,5+3+1,4+3+2}=3, A003056(9)=3, A051162(9)=6;
a(10)=10, A140207(10)=#{4+3+2+1}=1, A003056(10)=4, A051162(10)=4. (End)
		

References

  • Mohammad K. Azarian, A Generalization of the Climbing Stairs Problem, Mathematics and Computer Education, Vol. 31, No. 1, pp. 24-28, Winter 1997. MathEduc Database (Zentralblatt MATH, 1997c.01891).
  • Mohammad K. Azarian, A Generalization of the Climbing Stairs Problem II, Missouri Journal of Mathematical Sciences, Vol. 16, No. 1, Winter 2004, pp. 12-17. Zentralblatt MATH, Zbl 1071.05501.
  • George E. Andrews, The Theory of Partitions, Cambridge University Press, 1998, p. 19.
  • George E. Andrews, Number Theory, Dover Publications, 1994, Theorem 12-3, pp. 154-5, and (13-1-1) p. 163.
  • Raymond Ayoub, An Introduction to the Analytic Theory of Numbers, Amer. Math. Soc., 1963; see p. 196.
  • T. J. I'a. Bromwich, Introduction to the Theory of Infinite Series, Macmillan, 2nd. ed. 1949, p. 116, Problem 18.
  • Louis Comtet, Advanced Combinatorics, Reidel, 1974, p. 99.
  • William Dunham, The Mathematical Universe, pp. 57-62, J. Wiley, 1994.
  • Leonhard Euler, De partitione numerorum, Novi commentarii academiae scientiarum Petropolitanae 3 (1750/1), 1753, reprinted in: Commentationes Arithmeticae. (Opera Omnia. Series Prima: Opera Mathematica, Volumen Secundum), 1915, Lipsiae et Berolini, 254-294.
  • Ian P. Goulden and David M. Jackson, Combinatorial Enumeration, Wiley, N.Y., 1983, (2.5.1).
  • G. H. Hardy, Ramanujan: twelve lectures on subjects suggested by his life and work, Cambridge, University Press, 1940, p. 86.
  • G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers. 3rd ed., Oxford Univ. Press, 1954, p. 277, Theorems 344, 346.
  • Carlos J. Moreno and Samuel S. Wagstaff, Jr., Sums of Squares of Integers, Chapman and Hall, 2006, p. 253.
  • Srinivasa Ramanujan, Collected Papers, Ed. G. H. Hardy et al., Cambridge 1927; Chelsea, NY, 1962. See Table V on page 309.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, pages 288-290.

Crossrefs

Apart from the first term, equals A052839-1. The rows of A053632 converge to this sequence. When reduced modulo 2 equals the absolute values of A010815. The positions of odd terms given by A001318.
a(n) = Sum_{n=1..m} A097306(n, m), row sums of triangle of number of partitions of n into m odd parts.
Cf. A001318, A000041, A000700, A003724, A004111, A007837, A010815, A035294, A068049, A078408, A081360, A088670, A109950, A109968, A132312, A146061, A035363, A010054, A057077, A089806, A091602, A237515, A118457 (the partitions), A118459 (partition lengths), A015723 (total number of parts), A230957 (boustrophedon transform).
Cf. A167377 (complement).
Cf. A067659 (odd number of parts), A067661 (even number of parts).
Number of r-regular partitions for r = 2 through 12: A000009, A000726, A001935, A035959, A219601, A035985, A261775, A104502, A261776, A328545, A328546.

Programs

  • Haskell
    import Data.MemoCombinators (memo2, integral)
    a000009 n = a000009_list !! n
    a000009_list = map (pM 1) [0..] where
       pM = memo2 integral integral p
       p _ 0 = 1
       p k m | m < k     = 0
             | otherwise = pM (k + 1) (m - k) + pM (k + 1) m
    -- Reinhard Zumkeller, Sep 09 2015, Nov 05 2013
    
  • Julia
    # uses A010815
    using Memoize
    @memoize function A000009(n)
        n == 0 && return 1
        s = sum((-1)^k*A000009(n - k^2) for k in 1:isqrt(n))
        A010815(n) - 2*s
    end # Peter Luschny, Sep 09 2021
  • Magma
    Coefficients(&*[1+x^m:m in [1..100]])[1..100] where x is PolynomialRing(Integers()).1; // Sergei Haller (sergei(AT)sergei-haller.de), Dec 21 2006
    
  • Maple
    N := 100; t1 := series(mul(1+x^k,k=1..N),x,N); A000009 := proc(n) coeff(t1,x,n); end;
    spec := [ P, {P=PowerSet(N), N=Sequence(Z,card>=1)} ]: [ seq(combstruct[count](spec, size=n), n=0..58) ];
    spec := [ P, {P=PowerSet(N), N=Sequence(Z,card>=1)} ]: combstruct[allstructs](spec, size=10); # to get the actual partitions for n=10
    A000009 := proc(n)
        local x,m;
        product(1+x^m,m=1..n+1) ;
        expand(%) ;
        coeff(%,x,n) ;
    end proc: # R. J. Mathar, Jun 18 2016
    lim := 99; # Enlarge if more terms are needed.
    simplify(expand(QDifferenceEquations:-QPochhammer(-1, x, lim)/2, x)):
    seq(coeff(%, x, n), n=0..55); # Peter Luschny, Nov 17 2016
    # Alternative:
    a:= proc(n) option remember; `if`(n=0, 1, add(a(n-j)*add(
         `if`(d::odd, d, 0), d=numtheory[divisors](j)), j=1..n)/n)
        end:
    seq(a(n), n=0..55);  # Alois P. Heinz, Jun 24 2025
  • Mathematica
    PartitionsQ[Range[0, 60]] (* Harvey Dale, Jul 27 2009 *)
    a[ n_] := SeriesCoefficient[ Product[ 1 + x^k, {k, n}], {x, 0, n}]; (* Michael Somos, Jul 06 2011 *)
    a[ n_] := SeriesCoefficient[ 1 / Product[ 1 - x^k, {k, 1, n, 2}], {x, 0, n}]; (* Michael Somos, Jul 06 2011 *)
    a[ n_] := With[ {t = Log[q] / (2 Pi I)}, SeriesCoefficient[ q^(-1/24) DedekindEta[2 t] / DedekindEta[ t], {q, 0, n}]]; (* Michael Somos, Jul 06 2011 *)
    a[ n_] := SeriesCoefficient[ 1 / QPochhammer[ x, x^2], {x, 0, n}]; (* Michael Somos, May 24 2013 *)
    a[ n_] := SeriesCoefficient[ Series[ QHypergeometricPFQ[ {q}, {q x}, q, - q x], {q, 0, n}] /. x -> 1, {q, 0, n}]; (* Michael Somos, Mar 04 2014 *)
    a[ n_] := SeriesCoefficient[ QHypergeometricPFQ[{}, {}, q, -1] / 2, {q, 0, n}]; (* Michael Somos, Mar 04 2014 *)
    nmax = 60; CoefficientList[Series[Exp[Sum[(-1)^(k+1)/k*x^k/(1-x^k), {k, 1, nmax}]], {x, 0, nmax}], x] (* Vaclav Kotesovec, Aug 25 2015 *)
    nmax = 100; poly = ConstantArray[0, nmax + 1]; poly[[1]] = 1; poly[[2]] = 1; Do[Do[poly[[j + 1]] += poly[[j - k + 1]], {j, nmax, k, -1}];, {k, 2, nmax}]; poly (* Vaclav Kotesovec, Jan 14 2017 *)
  • Maxima
    num_distinct_partitions(60,list); /* Emanuele Munarini, Feb 24 2014 */
    
  • Maxima
    h(n):=if oddp(n)=true then 1 else 0;
    S(n,m):=if n=0 then 1 else if nVladimir Kruchinin, Sep 07 2014 */
    
  • PARI
    {a(n) = if( n<0, 0, polcoeff( prod( k=1, n, 1 + x^k, 1 + x * O(x^n)), n))}; /* Michael Somos, Nov 17 1999 */
    
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A) / eta(x + A), n))};
    
  • PARI
    {a(n) = my(c); forpart(p=n, if( n<1 || p[1]<2, c++; for(i=1, #p-1, if( p[i+1] > p[i]+1, c--; break)))); c}; /* Michael Somos, Aug 13 2017 */
    
  • PARI
    lista(nn) = {q='q+O('q^nn); Vec(eta(q^2)/eta(q))} \\ Altug Alkan, Mar 20 2018
    
  • Python
    # uses A010815
    from functools import lru_cache
    from math import isqrt
    @lru_cache(maxsize=None)
    def A000009(n): return 1 if n == 0 else A010815(n)+2*sum((-1)**(k+1)*A000009(n-k**2) for k in range(1,isqrt(n)+1)) # Chai Wah Wu, Sep 08 2021
    
  • Python
    import numpy as np
    n = 1000
    arr = np.zeros(n,dtype=object)
    arr[0] = 1
    for i in range(1,n):
        arr[i:] += arr[:n-i]
    print(arr) # Yigit Oktar, Jul 12 2025
    
  • SageMath
    # uses[EulerTransform from A166861]
    a = BinaryRecurrenceSequence(0, 1)
    b = EulerTransform(a)
    print([b(n) for n in range(56)]) # Peter Luschny, Nov 11 2020
    

Formula

G.f.: Product_{m>=1} (1 + x^m) = 1/Product_{m>=0} (1-x^(2m+1)) = Sum_{k>=0} Product_{i=1..k} x^i/(1-x^i) = Sum_{n>=0} x^(n*(n+1)/2) / Product_{k=1..n} (1-x^k).
G.f.: Sum_{n>=0} x^n*Product_{k=1..n-1} (1+x^k) = 1 + Sum_{n>=1} x^n*Product_{k>=n+1} (1+x^k). - Joerg Arndt, Jan 29 2011
Product_{k>=1} (1+x^(2k)) = Sum_{k>=0} x^(k*(k+1))/Product_{i=1..k} (1-x^(2i)) - Euler (Hardy and Wright, Theorem 346).
Asymptotics: a(n) ~ exp(Pi l_n / sqrt(3)) / ( 4 3^(1/4) l_n^(3/2) ) where l_n = (n-1/24)^(1/2) (Ayoub).
For n > 1, a(n) = (1/n)*Sum_{k=1..n} b(k)*a(n-k), with a(0)=1, b(n) = A000593(n) = sum of odd divisors of n; cf. A000700. - Vladeta Jovovic, Jan 21 2002
a(n) = t(n, 0), t as defined in A079211.
a(n) = Sum_{k=0..n-1} A117195(n,k) = A117192(n) + A117193(n) for n>0. - Reinhard Zumkeller, Mar 03 2006
a(n) = A026837(n) + A026838(n) = A118301(n) + A118302(n); a(A001318(n)) = A051044(n); a(A090864(n)) = A118303(n). - Reinhard Zumkeller, Apr 22 2006
Expansion of 1 / chi(-x) = chi(x) / chi(-x^2) = f(-x) / phi(x) = f(x) / phi(-x^2) = psi(x) / f(-x^2) = f(-x^2) / f(-x) = f(-x^4) / psi(-x) in powers of x where phi(), psi(), chi(), f() are Ramanujan theta functions. - Michael Somos, Mar 12 2011
G.f. is a period 1 Fourier series which satisfies f(-1 / (1152 t)) = 2^(-1/2) / f(t) where q = exp(2 Pi i t). - Michael Somos, Aug 16 2007
Expansion of q^(-1/24) * eta(q^2) / eta(q) in powers of q.
Expansion of q^(-1/24) 2^(-1/2) f2(t) in powers of q = exp(2 Pi i t) where f2() is a Weber function. - Michael Somos, Oct 18 2007
Given g.f. A(x), then B(x) = x * A(x^3)^8 satisfies 0 = f(B(x), B(x^2)) where f(u, v) = v - u^2 + 16*u*v^2 . - Michael Somos, May 31 2005
Given g.f. A(x), then B(x) = x * A(x^8)^3 satisfies 0 = f(B(x), B(x^3)) where f(u, v) = (u^3 - v) * (u + v^3) - 9 * u^3 * v^3. - Michael Somos, Mar 25 2008
From Evangelos Georgiadis, Andrew V. Sutherland, Kiran S. Kedlaya (egeorg(AT)mit.edu), Mar 03 2009: (Start)
a(0)=1; a(n) = 2*(Sum_{k=1..floor(sqrt(n))} (-1)^(k+1) a(n-k^2)) + sigma(n) where sigma(n) = (-1)^j if (n=(j*(3*j+1))/2 OR n=(j*(3*j-1))/2) otherwise sigma(n)=0 (simpler: sigma = A010815). (End)
From Gary W. Adamson, Jun 13 2009: (Start)
The product g.f. = (1/(1-x))*(1/(1-x^3))*(1/(1-x^5))*...; = (1,1,1,...)*
(1,0,0,1,0,0,1,0,0,1,...)*(1,0,0,0,0,1,0,0,0,0,1,0,0,0,0,1,...) * ...; =
a*b*c*... where a, a*b, a*b*c, ... converge to A000009:
1, 1, 1, 2, 2, 2, 3, 3, 3, 4, ... = a*b
1, 1, 1, 2, 2, 3, 4, 4, 5, 6, ... = a*b*c
1, 1, 1, 2, 2, 3, 4, 5, 6, 7, ... = a*b*c*d
1, 1, 1, 2, 2, 3, 4, 5, 6, 8, ... = a*b*c*d*e
1, 1, 1, 2, 2, 3, 4, 5, 6, 8, ... = a*b*c*d*e*f
... (cf. analogous example in A000041). (End)
a(A004526(n)) = A172033(n). - Reinhard Zumkeller, Jan 23 2010
a(n) = P(n) - P(n-2) - P(n-4) + P(n-10) + P(n-14) + ... + (-1)^m P(n-2p_m) + ..., where P(n) is the partition function (A000041) and p_m = m(3m-1)/2 is the m-th generalized pentagonal number (A001318). - Jerome Malenfant, Feb 16 2011
a(n) = A054242(n,0) = A201377(n,0). - Reinhard Zumkeller, Dec 02 2011
More precise asymptotics: a(n) ~ exp(Pi*sqrt((n-1/24)/3)) / (4*3^(1/4)*(n-1/24)^(3/4)) * (1 + (Pi^2-27)/(24*Pi*sqrt(3*(n-1/24))) + (Pi^4-270*Pi^2-1215)/(3456*Pi^2*(n-1/24))). - Vaclav Kotesovec, Nov 30 2015
a(n) = A067661(n) + A067659(n). Wolfdieter Lang, Jan 18 2016
From Vaclav Kotesovec, May 29 2016: (Start)
a(n) ~ exp(Pi*sqrt(n/3))/(4*3^(1/4)*n^(3/4)) * (1 + (Pi/(48*sqrt(3)) - (3*sqrt(3))/(8*Pi))/sqrt(n) + (Pi^2/13824 - 5/128 - 45/(128*Pi^2))/n).
a(n) ~ exp(Pi*sqrt(n/3) + (Pi/(48*sqrt(3)) - 3*sqrt(3)/(8*Pi))/sqrt(n) - (1/32 + 9/(16*Pi^2))/n) / (4*3^(1/4)*n^(3/4)).
(End)
a(n) = A089806(n)*A010815(floor(n/2)) + a(n-1) + a(n-2) - a(n-5) - a(n-7) + a(n-12) + ... + A057077(m-1)*a(n-A001318(m)) + ..., where n > A001318(m). - Gevorg Hmayakyan, Jul 07 2016
a(n) ~ Pi*BesselI(1, Pi*sqrt((n+1/24)/3)) / sqrt(24*n+1). - Vaclav Kotesovec, Nov 08 2016
a(n) = A000041(n) - A047967(n). - R. J. Mathar, Nov 20 2017
Sum_{n>=1} 1/a(n) = A237515. - Amiram Eldar, Nov 15 2020
From Peter Bala, Jan 15 2021: (Start)
G.f.: (1 + x)*Sum_{n >= 0} x^(n*(n+3)/2)/Product_{k = 1..n} (1 - x^k) =
(1 + x)*(1 + x^2)*Sum_{n >= 0} x^(n*(n+5)/2)/Product_{k = 1..n} (1 - x^k) = (1 + x)*(1 + x^2)*(1 + x^3)*Sum_{n >= 0} x^(n*(n+7)/2)/Product_{k = 1..n} (1 - x^k) = ....
G.f.: (1/2)*Sum_{n >= 0} x^(n*(n-1)/2)/Product_{k = 1..n} (1 - x^k) =
(1/2)*(1/(1 + x))*Sum_{n >= 0} x^((n-1)*(n-2)/2)/Product_{k = 1..n} (1 - x^k) = (1/2)*(1/((1 + x)*(1 + x^2)))*Sum_{n >= 0} x^((n-2)*(n-3)/2)/Product_{k = 1..n} (1 - x^k) = ....
G.f.: Sum_{n >= 0} x^n/Product_{k = 1..n} (1 - x^(2*k)) = (1/(1 - x)) * Sum_{n >= 0} x^(3*n)/Product_{k = 1..n} (1 - x^(2*k)) = (1/((1 - x)*(1 - x^3))) * Sum_{n >= 0} x^(5*n)/Product_{k = 1..n} (1 - x^(2*k)) = (1/((1 - x)*(1 - x^3)*(1 - x^5))) * Sum_{n >= 0} x^(7*n)/Product_{k = 1..n} (1 - x^(2*k)) = .... (End)
From Peter Bala, Feb 02 2021: (Start)
G.f.: A(x) = Sum_{n >= 0} x^(n*(2*n-1))/Product_{k = 1..2*n} (1 - x^k). (Set z = x and q = x^2 in Mc Laughlin et al. (2019 ArXiv version), Section 1.3, Identity 7.)
Similarly, A(x) = Sum_{n >= 0} x^(n*(2*n+1))/Product_{k = 1..2*n+1} (1 - x^k). (End)
a(n) = A001227(n) + A238005(n) + A238006(n). - R. J. Mathar, Sep 08 2021
G.f.: A(x) = exp ( Sum_{n >= 1} x^n/(n*(1 - x^(2*n))) ) = exp ( Sum_{n >= 1} (-1)^(n+1)*x^n/(n*(1 - x^n)) ). - Peter Bala, Dec 23 2021
Sum_{n>=0} a(n)/exp(Pi*n) = exp(Pi/24)/2^(1/8) = A292820. - Simon Plouffe, May 12 2023 [Proof: Sum_{n>=0} a(n)/exp(Pi*n) = phi(exp(-2*Pi)) / phi(exp(-Pi)), where phi(q) is the Euler modular function. We have phi(exp(-2*Pi)) = exp(Pi/12) * Gamma(1/4) / (2 * Pi^(3/4)) and phi(exp(-Pi)) = exp(Pi/24) * Gamma(1/4) / (2^(7/8) * Pi^(3/4)), see formulas (14) and (13) in I. Mező, 2013. - Vaclav Kotesovec, May 12 2023]
a(2*n) = Sum_{j=1..n} p(n+j, 2*j) and a(2*n+1) = Sum_{j=1..n+1} p(n+j,2*j-1), where p(n, s) is the number of partitions of n having exactly s parts. - Gregory L. Simay, Aug 30 2023

A010815 From Euler's Pentagonal Theorem: coefficient of q^n in Product_{m>=1} (1 - q^m).

Original entry on oeis.org

1, -1, -1, 0, 0, 1, 0, 1, 0, 0, 0, 0, -1, 0, 0, -1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1
Offset: 0

Views

Author

Keywords

Comments

When convolved with the partition numbers A000041 gives 1, 0, 0, 0, 0, ...
Also, number of different partitions of n into parts of -1 different kinds (based upon formal analogy). - Michele Dondi (blazar(AT)lcm.mi.infn.it), Jun 29 2004
The comment that "when convolved with the partition numbers gives [1, 0, 0, 0, ...]" is equivalent to row sums of triangle A145975 = [1, 0, 0, 0, ...]; where A145975 is a partition number convolution triangle. - Gary W. Adamson, Oct 25 2008
When convolved with n-th partial sums of A000041 = the binomial sequence starting (1, n, ...). Example: A010815 convolved with A014160 (partial sum operation applied thrice to the partition numbers) = (1, 3, 6, 10, ...). - Gary W. Adamson, Nov 11 2008
(A000012^(-n) * A000041) convolved with A010815 = n-th row of the inverse of Pascal's triangle, (as a vector, followed by zeros); where A000012^(-1) = the pairwise difference operator. Example: (A000012^(-4) * A000041) convolved with A010815 = (1, -4, 6, -4, 1, 0, 0, 0, ...). - Gary W. Adamson, Nov 11 2008
Also sum of [product of (1-2/(hook lengths)^2)] over all partitions of n. - Wouter Meeussen, Sep 16 2010
Cayley (1895) begins article 387 with "Write for shortness sqrt(2k'K / pi) / [1-q^{2m-1}]^2 = G, ..." which is a convoluted way of writing G = [1-q^{2m}] = (1-q^2)(1-q^4)... - Michael Somos, Aug 01 2011
This is an example of the quintuple product identity in the form f(a*b^4, a^2/b) - (a/b) * f(a^4*b, b^2/a) = f(-a*b, -a^2*b^2) * f(-a/b, -b^2) / f(a, b) where a = x^3, b = x. - Michael Somos, Jan 21 2012
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
Number 1 of the 14 primitive eta-products which are holomorphic modular forms of weight 1/2 listed by D. Zagier on page 30 of "The 1-2-3 of Modular Forms". - Michael Somos, May 04 2016

Examples

			G.f. = 1 - x - x^2 + x^5 + x^7 - x^12 - x^15 + x^22 + x^26 - x^35 - x^40 + ...
G.f. = q - q^25 - q^49 + q^121 + q^169 - q^289 - q^361 + q^529 + q^625 + ...
From _Seiichi Manyama_, Mar 04 2017: (Start)
G.f.
= 1 + (-x - 3*x^2/2 - 4*x^3/3 -  7*x^4/4  -  6*x^5/5 - ...)
     + 1/2 * (x^2   + 3*x^3   + 59*x^4/12 + 15*x^5/2 + ...)
              + 1/6 * (-x^3   -  9*x^4/2  - 43*x^5/4 - ...)
                         + 1/24 * (x^4    +  6*x^5   + ...)
                                   + 1/120 * (-x^5   - ...)
                                             + ...
= 1 - x - x^2 + x^5 + .... (End)
		

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, Tenth Printing, 1972, p. 825.
  • B. C. Berndt, Ramanujan's theory of theta-functions, Theta functions: from the classical to the modern, Amer. Math. Soc., Providence, RI, 1993, pp. 1-63. MR 94m:11054. See page 3.
  • T. J. I'a. Bromwich, Introduction to the Theory of Infinite Series, Macmillan, 2nd. ed. 1949, p. 116, Problem 18.
  • A. Cayley, An Elementary Treatise on Elliptic Functions, G. Bell and Sons, London, 1895, p. 295, Art. 387.
  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 104, [5g].
  • N. J. Fine, Basic Hypergeometric Series and Applications, Amer. Math. Soc., 1988; p. 77, Eq. (32.12) and (32.13).
  • G. H. Hardy, Ramanujan: twelve lectures on subjects suggested by his life and work, Cambridge, University Press, 1940, p. 86.
  • G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, 5th ed., Oxford Univ. Press, 1979, Theorem 353.
  • B. Schoeneberg, Elliptic Modular Functions, Springer-Verlag, NY, 1974, p. 70.
  • A. Weil, Number theory: an approach through history; from Hammurapi to Legendre, Birkhäuser, Boston, 1984; see p. 186.

Crossrefs

Programs

  • Julia
    # DedekindEta is defined in A000594.
    A010815List(len) = DedekindEta(len, 1)
    A010815List(93) |> println # Peter Luschny, Mar 09 2018
    
  • Julia
    function A010815(n)
        r = 24 * n + 1
        m = isqrt(r)
        m * m != r && return 0
        iseven(div(m + m % 6, 6)) ? 1 : -1
    end # Peter Luschny, Sep 09 2021
  • Magma
    Coefficients(&*[1-x^m:m in [1..100]])[1..100] where x is PolynomialRing(Integers()).1; // Vincenzo Librandi, Jan 15 2017
    
  • Maple
    A010815 := mul((1-x^m), m=1..100);
    A010815 := proc(n) local x,m;
        product(1-x^m,m=1..n) ;
        expand(%) ;
        coeff(%,x,n) ;
    end proc: # R. J. Mathar, Jun 18 2016
    A010815 := proc(n) 24*n + 1; if issqr(%) then sqrt(%);
    (-1)^irem(iquo(% + irem(%, 6), 6), 2) else 0 fi end: # Peter Luschny, Oct 02 2022
  • Mathematica
    a[ n_] := SeriesCoefficient[ Product[ 1 - x^k, {k, n}], {x, 0, n}]; (* Michael Somos, Nov 15 2011 *)
    a[ n_] := If[ n < 0, 0, SeriesCoefficient[ (Series[ EllipticTheta[ 3, Log[y] / (2 I), x^(3/2)], {x, 0, n + Floor@Sqrt[n]}] // Normal // TrigToExp) /. {y -> -x^(1/2)}, {x, 0, n}]]; (* Michael Somos, Nov 15 2011 *)
    CoefficientList[ Series[ Product[(1 - x^k), {k, 1, 70}], {x, 0, 70}], x]
    (* hooklength[ ] cfr A047874 *) Table[ Tr[ ( Times@@(1-2/Flatten[hooklength[ # ]]^2) )&/@ Partitions[n] ],{n,26}] (* Wouter Meeussen, Sep 16 2010 *)
    CoefficientList[ Series[ QPochhammer[q], {q, 0, 100}], q] (* Jean-François Alcover, Dec 04 2013 *)
    a[ n_] := With[ {m = Sqrt[24 n + 1]}, If[ IntegerQ[m], KroneckerSymbol[ 12, m], 0]]; (* Michael Somos, Jun 04 2015 *)
    nmax = 100; poly = ConstantArray[0, nmax + 1]; poly[[1]] = 1; poly[[2]] = -1; Do[Do[poly[[j + 1]] -= poly[[j - k + 1]], {j, nmax, k, -1}];, {k, 2, nmax}]; poly (* Vaclav Kotesovec, May 04 2018 *)
    Table[m = (1 + Sqrt[1 + 24*k])/6; If[IntegerQ[m], (-1)^m, 0] + If[IntegerQ[m - 1/3], (-1)^(m - 1/3), 0], {k, 0, 100}] (* Vaclav Kotesovec, Jul 09 2020 *)
  • PARI
    {a(n) = if( n<0, 0, polcoeff( eta(x + x * O(x^n)), n))}; /* Michael Somos, Jun 05 2002 */
    
  • PARI
    {a(n) = polcoeff( prod( k=1, n, 1 - x^k, 1 + x * O(x^n)), n)}; /* Michael Somos, Nov 19 2011 */
    
  • PARI
    {a(n) = if( issquare( 24*n + 1, &n), kronecker( 12, n))}; /* Michael Somos, Feb 26 2006 */
    
  • PARI
    {a(n) = if( issquare( 24*n + 1, &n), if( (n%2) && (n%3), (-1)^round( n/6 )))}; /* Michael Somos, Feb 26 2006 */
    
  • PARI
    {a(n) = my(A); if( n<0, 0, A = 1 + O(x^n); polcoeff( sum( k=1, (sqrtint( 8*n + 1)-1) \ 2, A *= x^k / (x^k - 1) + x * O(x^(n - (k^2-k)/2)), 1), n))}; /* Michael Somos, Aug 18 2006 */
    
  • PARI
    lista(nn) = {q='q+O('q^nn); Vec(eta(q))} \\ Altug Alkan, Mar 21 2018
    
  • Python
    from math import isqrt
    def A010815(n):
        m = isqrt(24*n+1)
        return 0 if m**2 != 24*n+1 else ((-1)**((m-1)//6) if m % 6 == 1 else (-1)**((m+1)//6)) # Chai Wah Wu, Sep 08 2021
    

Formula

a(n) = (-1)^m if n is of the form m(3m+-1)/2; otherwise a(n)=0. The values of n such that |a(n)|=1 are the generalized pentagonal numbers, A001318. The values of n such that a(n)=0 is A090864.
Expansion of the Dedekind eta function without the q^(1/24) factor in powers of q.
Euler transform of period 1 sequence [ -1, -1, -1, ...].
G.f.: (q; q){oo} = Product{k >= 1} (1-q^k) = Sum_{n=-oo..oo} (-1)^n*q^(n*(3n+1)/2). The first notation is a q-Pochhammer symbol.
Expansion of f(-x) := f(-x, -x^2) in powers of x. A special case of Ramanujan's general theta function; see Berndt reference. - Michael Somos, Apr 08 2003
a(n) = A067661(n) - A067659(n). - Jon Perry, Jun 17 2003
Expansion of f(x^5, x^7) - x * f(x, x^11) in powers of x where f(, ) is Ramanujan's general theta function. - Michael Somos, Jan 21 2012
G.f.: q^(-1/24) * eta(t), where q = exp(2 Pi i t) and eta is the Dedekind eta function.
G.f.: 1 - x - x^2(1-x) - x^3(1-x)(1-x^2) - ... - Jon Perry, Aug 07 2004
Given g.f. A(x), then B(q) = q * A(q^3)^8 satisfies 0 = f(B(q), B(q^2), B(q^4)) where f(u, v, w) = u^2*w - v^3 + 16*u*w^2. - Michael Somos, May 02 2005
Given g.f. A(x), then B(q) = q * A(q^24) satisfies 0 = f(B(q), B(x^q), B(q^3), B(q^6)) where f(u1, u2, u3, u6) = u1^9*u3*u6^3 - u2^9*u3^4 + 9*u1^4*u2*u6^8. - Michael Somos, May 02 2005
a(n) = b(24*n + 1) where b() is multiplicative with b(p^2e) = (-1)^e if p == 5 or 7 (mod 12), b(p^2e) = +1 if p == 1 or 11 (mod 12) and b(p^(2e-1)) = b(2^e) = b(3^e) = 0 if e>0. - Michael Somos, May 08 2005
Given g.f. A(x), then B(q) = q * A(q^24) satisfies 0 = f(B(q), B(q^2), B(q^4)) where f(u, v, w) = u^16*w^8 - v^24 + 16*u^8*w^16. - Michael Somos, May 08 2005
a(n) = (-1)^n * A121373(n). a(25*n + 1) = -a(n). a(5*n + 3) = a(5*n + 4) = 0. a(5*n) = A113681(n). a(5*n + 2) = - A116915(n). - Michael Somos, Feb 26 2006
G.f.: 1 + Sum_{k>0} (-1)^k * x^((k^2 + k) / 2) / ((1 - x) * (1 - x^2) * ... * (1 - x^k)). - Michael Somos, Aug 18 2006
a(n) = -(1/n)*Sum_{k=1..n} sigma(k)*a(n-k). - Vladeta Jovovic, Aug 28 2002
G.f.: A(x) = 1 - x/G(0); G(k) = 1 + x - x^(k+1) - x*(1-x^(k+1))/G(k+1); (continued fraction). - Sergei N. Gladkovskii, Jan 25 2012
Expansion of f(-x^2) * chi(-x) = psi(-x) * chi(-x^2) = psi(x) * chi(-x)^2 = f(-x^2)^2 / psi(x) = phi(-x) / chi(-x) = phi(-x^2) / chi(x) in powers of x where phi(), psi(), chi(), f() are Ramanujan theta functions. - Michael Somos, Nov 16 2015
G.f.: exp( Sum_{n>=1} -sigma(n)*x^n/n ). - Seiichi Manyama, Mar 04 2017
G.f.: Sum_{n >= 0} x^(n*(2*n-1))*(2*x^(2*n) - 1)/Product_{k = 1..2*n} 1 - x^k. - Peter Bala, Feb 02 2021
The g.f. A(x) satisfies A(x^2) = Sum_{n >= 0} x^(n*(n+1)/2) * Product_{k >= n+1} 1 - x^k = 1 - x^2 - x^4 + x^10 + x^14 - x^24 - x^30 + + - - .... - Peter Bala, Feb 12 2021
For m >= 0, A(x) = (1 - x)*(1 - x^2)*...*(1 - x^m) * Sum_{n >= 0} (-1)^n * x^(n*(n+2*m+1)/2) /(Product_{k = 1..n} 1 - x^k). - Peter Bala, Feb 03 2025
From Friedjof Tellkamp, Mar 19 2025: (Start)
Sum_{n>=1} a(n)/n = 6 - 4*Pi/sqrt(3).
Sum_{n>=1} a(n)/n^2 = -108 + 16*sqrt(3)*Pi + 2*Pi^2.
Sum_{n>=1} a(n)/n^k = Sum_{i=0..k} 6^(k-i)*C(-k, k-i)*A(i), where A(i)=(2^i-2)*(3^i-3)*zeta(i) for even i, and A(i)=-G(i/2-1/2)*(2^i+2)*(2*Pi)^i/(sqrt(3)*Gamma(i+1)) for odd i, with G(n>0) as the Glaisher's numbers (A002111) and G(0)=1/2. (End)

Extensions

Additional comments from Michael Somos, Jun 05 2002

A027187 Number of partitions of n into an even number of parts.

Original entry on oeis.org

1, 0, 1, 1, 3, 3, 6, 7, 12, 14, 22, 27, 40, 49, 69, 86, 118, 146, 195, 242, 317, 392, 505, 623, 793, 973, 1224, 1498, 1867, 2274, 2811, 3411, 4186, 5059, 6168, 7427, 9005, 10801, 13026, 15572, 18692, 22267, 26613, 31602, 37619, 44533, 52815, 62338, 73680, 86716, 102162, 119918
Offset: 0

Views

Author

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
For n > 0, also the number of partitions of n whose greatest part is even. [Edited by Gus Wiseman, Jan 05 2021]
Number of partitions of n+1 into an odd number of parts, the least being 1.
Also the number of partitions of n such that the number of even parts has the same parity as the number of odd parts; see Comments at A027193. - Clark Kimberling, Feb 01 2014, corrected Jan 06 2021
Suppose that c(0) = 1, that c(1), c(2), ... are indeterminates, that d(0) = 1, and that d(n) = -c(n) - c(n-1)*d(1) - ... - c(0)*d(n-1). When d(n) is expanded as a polynomial in c(1), c(2),..,c(n), the terms are of the form H*c(i_1)*c(i_2)*...*c(i_k). Let P(n) = [c(i_1), c(i_2), ..., c(i_k)], a partition of n. Then H is negative if P has an odd number of parts, and H is positive if P has an even number of parts. That is, d(n) has A027193(n) negative coefficients, A027187(n) positive coefficients, and A000041 terms. The maximal coefficient in d(n), in absolute value, is A102462(n). - Clark Kimberling, Dec 15 2016

Examples

			G.f. = 1 + x^2 + x^3 + 3*x^4 + 3*x^5 + 6*x^6 + 7*x^7 + 12*x^8 + 14*x^9 + 22*x^10 + ...
From _Gus Wiseman_, Jan 05 2021: (Start)
The a(2) = 1 through a(8) = 12 partitions into an even number of parts are the following. The Heinz numbers of these partitions are given by A028260.
  (11)  (21)  (22)    (32)    (33)      (43)      (44)
              (31)    (41)    (42)      (52)      (53)
              (1111)  (2111)  (51)      (61)      (62)
                              (2211)    (2221)    (71)
                              (3111)    (3211)    (2222)
                              (111111)  (4111)    (3221)
                                        (211111)  (3311)
                                                  (4211)
                                                  (5111)
                                                  (221111)
                                                  (311111)
                                                  (11111111)
The a(2) = 1 through a(8) = 12 partitions whose greatest part is even are the following. The Heinz numbers of these partitions are given by A244990.
  (2)  (21)  (4)    (41)    (6)      (43)      (8)
             (22)   (221)   (42)     (61)      (44)
             (211)  (2111)  (222)    (421)     (62)
                            (411)    (2221)    (422)
                            (2211)   (4111)    (431)
                            (21111)  (22111)   (611)
                                     (211111)  (2222)
                                               (4211)
                                               (22211)
                                               (41111)
                                               (221111)
                                               (2111111)
(End)
		

References

  • N. J. Fine, Basic Hypergeometric Series and Applications, Amer. Math. Soc., 1988; See p. 8, (7.323) and p. 39, Example 7.

Crossrefs

The Heinz numbers of these partitions are A028260.
The odd version is A027193.
The strict case is A067661.
The case of even sum as well as length is A236913 (the even bisection).
Other cases of even length:
- A024430 counts set partitions of even length.
- A034008 counts compositions of even length.
- A052841 counts ordered set partitions of even length.
- A174725 counts ordered factorizations of even length.
- A332305 counts strict compositions of even length
- A339846 counts factorizations of even length.
A000009 counts partitions into odd parts, ranked by A066208.
A026805 counts partitions whose least part is even.
A072233 counts partitions by sum and length.
A101708 counts partitions of even positive rank.

Programs

  • Mathematica
    f[n_] := Length[Select[IntegerPartitions[n], IntegerQ[First[#]/2] &]]; Table[f[n], {n, 1, 30}] (* Clark Kimberling, Mar 13 2012 *)
    a[ n_] := SeriesCoefficient[ (1 + EllipticTheta[ 4, 0, x]) / (2 QPochhammer[ x]), {x, 0, n}]; (* Michael Somos, May 06 2015 *)
    a[ n_] := If[ n < 0, 0, Length@Select[ IntegerPartitions[n], EvenQ[Length @ #] &]]; (* Michael Somos, May 06 2015 *)
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( sum( k=0, sqrtint(n), (-x)^k^2, A) / eta(x + A), n))}; /* Michael Somos, Aug 19 2006 */
    
  • PARI
    my(q='q+O('q^66)); Vec( (1/eta(q)+eta(q)/eta(q^2))/2 ) \\ Joerg Arndt, Mar 23 2014

Formula

a(n) = (A000041(n) + (-1)^n * A000700(n))/2.
a(n) = p(n) - p(n-1) + p(n-4) - p(n-9) + ... where p(n) is the number of unrestricted partitions of n, A000041. [Fine] - David Callan, Mar 14 2004
From Bill Gosper, Jun 25 2005: (Start)
G.f.: A(q) = Sum_{n >= 0} a(n) q^n = 1 + q^2 + q^3 + 3*q^4 + 3*q^5 + 6*q^6 + ...
= Sum_{n >= 0} q^(2*n)/(q; q)_{2*n}
= ((Product_{k >= 1} 1/(1-q^k)) + (Product_{k >= 1} 1/(1+q^k)))/2.
Also, let B(q) = Sum_{n >= 0} A027193(n) q^n = q + q^2 + 2*q^3 + 2*q^4 + 4*q^5 + 5*q^6 + ...
Then B(q) = Sum_{n >= 0} q^(2*n+1)/(q; q){2*n+1} = ((Product{k >= 1} 1/(1-q^k)) - (Product_{k >= 1} 1/(1+q^k)))/2.
Also we have the following identity involving 2 X 2 matrices:
Product_{k >= 1} [ 1/(1-q^(2*k)), q^k/(1-q^(2*k)) ; q^k/(1-q^(2*k)), 1/(1-q^(2*k)) ]
= [ A(q), B(q) ; B(q), A(q) ]. (End)
a(2*n) = A046682(2*n), a(2*n+1) = A000701(2*n+1); a(n) = A000041(n)-A027193(n). - Reinhard Zumkeller, Apr 22 2006
Expansion of (1 + phi(-q)) / (2 * f(-q)) where phi(), f() are Ramanujan theta functions. - Michael Somos, Aug 19 2006
G.f.: (Sum_{k>=0} (-1)^k * x^(k^2)) / (Product_{k>0} (1 - x^k)). - Michael Somos, Aug 19 2006
a(n) = A338914(n) + A096373(n). - Gus Wiseman, Jan 06 2021

Extensions

Offset changed to 0 by Michael Somos, Jul 24 2012

A035363 Number of partitions of n into even parts.

Original entry on oeis.org

1, 0, 1, 0, 2, 0, 3, 0, 5, 0, 7, 0, 11, 0, 15, 0, 22, 0, 30, 0, 42, 0, 56, 0, 77, 0, 101, 0, 135, 0, 176, 0, 231, 0, 297, 0, 385, 0, 490, 0, 627, 0, 792, 0, 1002, 0, 1255, 0, 1575, 0, 1958, 0, 2436, 0, 3010, 0, 3718, 0, 4565, 0, 5604, 0, 6842, 0, 8349, 0, 10143, 0, 12310, 0
Offset: 0

Views

Author

Keywords

Comments

Convolved with A036469 = A000070. - Gary W. Adamson, Jun 09 2009
Note that these partitions are located in the head of the last section of the set of partitions of n (see A135010). - Omar E. Pol, Nov 20 2009
Number of symmetric unimodal compositions of n+2 where the maximal part appears twice, see example. Also number of symmetric unimodal compositions of n where the maximal part appears an even number of times. - Joerg Arndt, Jun 11 2013
Number of partitions of n having parts of even multiplicity. These are the conjugates of the partitions from the definition. Example: a(8)=5 because we have [4,4],[3,3,1,1],[2,2,2,2],[2,2,1,1,1,1], and [1,1,1,1,1,1,1,1]. - Emeric Deutsch, Jan 27 2016
From Gus Wiseman, May 22 2021: (Start)
The Heinz numbers of the conjugate partitions described in Emeric Deutsch's comment above are given by A000290.
For n > 1, also the number of integer partitions of n-1 whose only odd part is the smallest. The Heinz numbers of these partitions are given by A341446. For example, the a(2) = 1 through a(14) = 15 partitions (empty columns shown as dots, A..D = 10..13) are:
1 . 3 . 5 . 7 . 9 . B . D
21 41 43 63 65 85
221 61 81 83 A3
421 441 A1 C1
2221 621 443 643
4221 641 661
22221 821 841
4421 A21
6221 4441
42221 6421
222221 8221
44221
62221
422221
2222221
Also the number of integer partitions of n whose greatest part is the sum of all the other parts. The Heinz numbers of these partitions are given by A344415. For example, the a(2) = 1 through a(12) = 11 partitions (empty columns not shown) are:
(11) (22) (33) (44) (55) (66)
(211) (321) (422) (532) (633)
(3111) (431) (541) (642)
(4211) (5221) (651)
(41111) (5311) (6222)
(52111) (6321)
(511111) (6411)
(62211)
(63111)
(621111)
(6111111)
Also the number of integer partitions of n of length n/2. The Heinz numbers of these partitions are given by A340387. For example, the a(2) = 1 through a(14) = 15 partitions (empty columns not shown) are:
(2) (22) (222) (2222) (22222) (222222) (2222222)
(31) (321) (3221) (32221) (322221) (3222221)
(411) (3311) (33211) (332211) (3322211)
(4211) (42211) (333111) (3332111)
(5111) (43111) (422211) (4222211)
(52111) (432111) (4322111)
(61111) (441111) (4331111)
(522111) (4421111)
(531111) (5222111)
(621111) (5321111)
(711111) (5411111)
(6221111)
(6311111)
(7211111)
(8111111)
(End)

Examples

			From _Joerg Arndt_, Jun 11 2013: (Start)
There are a(12)=11 symmetric unimodal compositions of 12+2=14 where the maximal part appears twice:
01:  [ 1 1 1 1 1 2 2 1 1 1 1 1 ]
02:  [ 1 1 1 1 3 3 1 1 1 1 ]
03:  [ 1 1 1 4 4 1 1 1 ]
04:  [ 1 1 2 3 3 2 1 1 ]
05:  [ 1 1 5 5 1 1 ]
06:  [ 1 2 4 4 2 1 ]
07:  [ 1 6 6 1 ]
08:  [ 2 2 3 3 2 2 ]
09:  [ 2 5 5 2 ]
10:  [ 3 4 4 3 ]
11:  [ 7 7 ]
There are a(14)=15 symmetric unimodal compositions of 14 where the maximal part appears an even number of times:
01:  [ 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ]
02:  [ 1 1 1 1 1 2 2 1 1 1 1 1 ]
03:  [ 1 1 1 1 3 3 1 1 1 1 ]
04:  [ 1 1 1 2 2 2 2 1 1 1 ]
05:  [ 1 1 1 4 4 1 1 1 ]
06:  [ 1 1 2 3 3 2 1 1 ]
07:  [ 1 1 5 5 1 1 ]
08:  [ 1 2 2 2 2 2 2 1 ]
09:  [ 1 2 4 4 2 1 ]
10:  [ 1 3 3 3 3 1 ]
11:  [ 1 6 6 1 ]
12:  [ 2 2 3 3 2 2 ]
13:  [ 2 5 5 2 ]
14:  [ 3 4 4 3 ]
15:  [ 7 7 ]
(End)
a(8)=5 because we  have [8], [6,2], [4,4], [4,2,2], and [2,2,2,2]. - _Emeric Deutsch_, Jan 27 2016
From _Gus Wiseman_, May 22 2021: (Start)
The a(0) = 1 through a(12) = 11 partitions into even parts are the following (empty columns shown as dots, A = 10, C = 12). The Heinz numbers of these partitions are given by A066207.
  ()  .  (2)  .  (4)   .  (6)    .  (8)     .  (A)      .  (C)
                 (22)     (42)      (44)       (64)        (66)
                          (222)     (62)       (82)        (84)
                                    (422)      (442)       (A2)
                                    (2222)     (622)       (444)
                                               (4222)      (642)
                                               (22222)     (822)
                                                           (4422)
                                                           (6222)
                                                           (42222)
                                                           (222222)
(End)
		

References

  • Mohammad K. Azarian, A Generalization of the Climbing Stairs Problem, Mathematics and Computer Education, Vol. 31, No. 1, pp. 24-28, Winter 1997. MathEduc Database (Zentralblatt MATH, 1997c.01891).
  • Mohammad K. Azarian, A Generalization of the Climbing Stairs Problem II, Missouri Journal of Mathematical Sciences, Vol. 16, No. 1, Winter 2004, pp. 12-17. Zentralblatt MATH, Zbl 1071.05501.

Crossrefs

Bisection (even part) gives the partition numbers A000041.
Column k=0 of A103919, A264398.
Note: A-numbers of ranking sequences are in parentheses below.
The version for odd instead of even parts is A000009 (A066208).
The version for parts divisible by 3 instead of 2 is A035377.
The strict case is A035457.
The Heinz numbers of these partitions are given by A066207.
The ordered version (compositions) is A077957 prepended by (1,0).
This is column k = 2 of A168021.
The multiplicative version (factorizations) is A340785.
A000569 counts graphical partitions (A320922).
A004526 counts partitions of length 2 (A001358).
A025065 counts palindromic partitions (A265640).
A027187 counts partitions with even length/maximum (A028260/A244990).
A058696 counts partitions of even numbers (A300061).
A067661 counts strict partitions of even length (A030229).
A236913 counts partitions of even length and sum (A340784).
A340601 counts partitions of even rank (A340602).
The following count partitions of even length:
- A096373 cannot be partitioned into strict pairs (A320891).
- A338914 can be partitioned into strict pairs (A320911).
- A338915 cannot be partitioned into distinct pairs (A320892).
- A338916 can be partitioned into distinct pairs (A320912).
- A339559 cannot be partitioned into distinct strict pairs (A320894).
- A339560 can be partitioned into distinct strict pairs (A339561).

Programs

  • Maple
    ZL:= [S, {C = Cycle(B), S = Set(C), E = Set(B), B = Prod(Z,Z)}, unlabelled]: seq(combstruct[count](ZL, size=n), n=0..69); # Zerinvary Lajos, Mar 26 2008
    g := 1/mul(1-x^(2*k), k = 1 .. 100): gser := series(g, x = 0, 80): seq(coeff(gser, x, n), n = 0 .. 78); # Emeric Deutsch, Jan 27 2016
    # Using the function EULER from Transforms (see link at the bottom of the page).
    [1,op(EULER([0,1,seq(irem(n,2),n=0..66)]))]; # Peter Luschny, Aug 19 2020
    # next Maple program:
    a:= n-> `if`(n::odd, 0, combinat[numbpart](n/2)):
    seq(a(n), n=0..84);  # Alois P. Heinz, Jun 22 2021
  • Mathematica
    nmax = 50; s = Range[2, nmax, 2];
    Table[Count[IntegerPartitions@n, x_ /; SubsetQ[s, x]], {n, 0, nmax}] (* Robert Price, Aug 05 2020 *)
  • Python
    from sympy import npartitions
    def A035363(n): return 0 if n&1 else npartitions(n>>1) # Chai Wah Wu, Sep 23 2023

Formula

G.f.: Product_{k even} 1/(1 - x^k).
Convolution with the number of partitions into distinct parts (A000009, which is also number of partitions into odd parts) gives the number of partitions (A000041). - Franklin T. Adams-Watters, Jan 06 2006
If n is even then a(n)=A000041(n/2) otherwise a(n)=0. - Omar E. Pol, Nov 20 2009
G.f.: 1 + x^2*(1 - G(0))/(1-x^2) where G(k) = 1 - 1/(1-x^(2*k+2))/(1-x^2/(x^2-1/G(k+1) )); (recursively defined continued fraction). - Sergei N. Gladkovskii, Jan 23 2013
a(n) = A096441(n) - A000009(n), n >= 1. - Omar E. Pol, Aug 16 2013
G.f.: exp(Sum_{k>=1} x^(2*k)/(k*(1 - x^(2*k)))). - Ilya Gutkovskiy, Aug 13 2018

A067659 Number of partitions of n into distinct parts such that number of parts is odd.

Original entry on oeis.org

0, 1, 1, 1, 1, 1, 2, 2, 3, 4, 5, 6, 8, 9, 11, 14, 16, 19, 23, 27, 32, 38, 44, 52, 61, 71, 82, 96, 111, 128, 148, 170, 195, 224, 256, 293, 334, 380, 432, 491, 557, 630, 713, 805, 908, 1024, 1152, 1295, 1455, 1632, 1829, 2048, 2291, 2560, 2859, 3189, 3554, 3958, 4404
Offset: 0

Views

Author

Naohiro Nomoto, Feb 23 2002

Keywords

Comments

Ramanujan theta functions: phi(q) := Sum_{k=-oo..oo} q^(k^2) (A000122), chi(q) := Prod_{k>=0} (1+q^(2k+1)) (A000700).

Examples

			From _Gus Wiseman_, Jan 09 2021: (Start)
The a(5) = 1 through a(15) = 14 partitions (A-F = 10..15):
  5   6     7     8     9     A     B     C     D     E     F
      321   421   431   432   532   542   543   643   653   654
                  521   531   541   632   642   652   743   753
                        621   631   641   651   742   752   762
                              721   731   732   751   761   843
                                    821   741   832   842   852
                                          831   841   851   861
                                          921   931   932   942
                                                A21   941   951
                                                      A31   A32
                                                      B21   A41
                                                            B31
                                                            C21
                                                            54321
(End)
		

Crossrefs

Dominates A000009.
Numbers with these strict partitions as binary indices are A000069.
The non-strict version is A027193.
The Heinz numbers of these partitions are A030059.
The even version is A067661.
The version for rank is A117193, with non-strict version A101707.
The ordered version is A332304, with non-strict version A166444.
Other cases of odd length:
- A024429 counts set partitions of odd length.
- A089677 counts ordered set partitions of odd length.
- A174726 counts ordered factorizations of odd length.
- A339890 counts factorizations of odd length.
A008289 counts strict partitions by sum and length.
A026804 counts partitions whose least part is odd, with strict case A026832.

Programs

  • Maple
    b:= proc(n, i, t) option remember; `if`(n>i*(i+1)/2, 0,
          `if`(n=0, t, add(b(n-i*j, i-1, abs(t-j)), j=0..min(n/i, 1))))
        end:
    a:= n-> b(n$2, 0):
    seq(a(n), n=0..80);  # Alois P. Heinz, Apr 01 2014
  • Mathematica
    b[n_, i_, t_] := b[n, i, t] = If[n > i*(i + 1)/2, 0, If[n == 0, t, Sum[b[n - i*j, i - 1, Abs[t - j]], {j, 0, Min[n/i, 1]}]]]; a[n_] := b[n, n, 0]; Table[a[n], {n, 0, 80}] (* Jean-François Alcover, Jan 16 2015, after Alois P. Heinz *)
    CoefficientList[Normal[Series[(QPochhammer[-x, x]-QPochhammer[x])/2, {x, 0, 100}]], x] (* Andrey Zabolotskiy, Apr 12 2017 *)
    Table[Length[Select[IntegerPartitions[n],UnsameQ@@#&&OddQ[Length[#]]&]],{n,0,30}] (* Gus Wiseman, Jan 09 2021 *)
  • PARI
    {a(n)=local(A); if(n<0, 0, A=x*O(x^n); polcoeff( (eta(x^2+A)/eta(x+A) - eta(x+A))/2, n))} /* Michael Somos, Feb 14 2006 */
    
  • PARI
    N=66;  q='q+O('q^N);  S=1+2*sqrtint(N);
    gf=sum(n=1,S, (n%2!=0) * q^(n*(n+1)/2) / prod(k=1,n, 1-q^k ) );
    concat( [0], Vec(gf) )  /* Joerg Arndt, Oct 20 2012 */
    
  • PARI
    N=66;  q='q+O('q^N);  S=1+sqrtint(N);
    gf=sum(n=1, S, q^(2*n^2-n) / prod(k=1, 2*n-1, 1-q^k ) );
    concat( [0], Vec(gf) )  \\ Joerg Arndt, Apr 01 2014

Formula

For g.f. see under A067661.
a(n) = (A000009(n)-A010815(n))/2. - Vladeta Jovovic, Feb 24 2002
Expansion of (1-phi(-q))/(2*chi(-q)) in powers of q where phi(),chi() are Ramanujan theta functions. - Michael Somos, Feb 14 2006
G.f.: sum(n>=1, q^(2*n^2-n) / prod(k=1..2*n-1, 1-q^k ) ). [Joerg Arndt, Apr 01 2014]
a(n) = A067661(n) - A010815(n). - Andrey Zabolotskiy, Apr 12 2017
A000009(n) = a(n) + A067661(n). - Gus Wiseman, Jan 09 2021

A236913 Number of partitions of 2n of type EE (see Comments).

Original entry on oeis.org

1, 1, 3, 6, 12, 22, 40, 69, 118, 195, 317, 505, 793, 1224, 1867, 2811, 4186, 6168, 9005, 13026, 18692, 26613, 37619, 52815, 73680, 102162, 140853, 193144, 263490, 357699, 483338, 650196, 870953, 1161916, 1544048, 2044188, 2696627, 3545015, 4644850, 6066425
Offset: 0

Views

Author

Clark Kimberling, Feb 01 2014

Keywords

Comments

The partitions of n are partitioned into four types:
EO, even # of odd parts and odd # of even parts, A236559;
OE, odd # of odd parts and even # of even parts, A160786;
EE, even # of odd parts and even # of even parts, A236913;
OO, odd # of odd parts and odd # of even parts, A236914.
A236559 and A160786 are the bisections of A027193;
A236913 and A236914 are the bisections of A027187.

Examples

			The partitions of 4 of type EE are [3,1], [2,2], [1,1,1,1], so that a(2) = 3.
type/k . 1 .. 2 .. 3 .. 4 .. 5 .. 6 .. 7 .. 8 ... 9 ... 10 .. 11
EO ..... 0 .. 1 .. 0 .. 2 .. 0 .. 5 .. 0 .. 10 .. 0 ... 20 .. 0
OE ..... 1 .. 0 .. 2 .. 0 .. 4 .. 0 .. 8 .. 0 ... 16 .. 0 ... 29
EE ..... 0 .. 1 .. 0 .. 3 .. 0 .. 6 .. 0 .. 12 .. 0 ... 22 .. 0
OO ..... 0 .. 0 .. 1 .. 0 .. 3 .. 0 .. 7 .. 0 ... 14 .. 0 ... 27
From _Gus Wiseman_, Feb 09 2021: (Start)
This sequence counts even-length partitions of even numbers, which have Heinz numbers given by A340784. For example, the a(0) = 1 through a(4) = 12 partitions are:
  ()  (11)  (22)    (33)      (44)
            (31)    (42)      (53)
            (1111)  (51)      (62)
                    (2211)    (71)
                    (3111)    (2222)
                    (111111)  (3221)
                              (3311)
                              (4211)
                              (5111)
                              (221111)
                              (311111)
                              (11111111)
(End)
		

Crossrefs

Note: A-numbers of ranking sequences are in parentheses below.
The ordered version is A000302.
The case of odd-length partitions of odd numbers is A160786 (A340931).
The Heinz numbers of these partitions are (A340784).
A027187 counts partitions of even length/maximum (A028260/A244990).
A034008 counts compositions of even length.
A035363 counts partitions into even parts (A066207).
A047993 counts balanced partitions (A106529).
A058695 counts partitions of odd numbers (A300063).
A058696 counts partitions of even numbers (A300061).
A067661 counts strict partitions of even length (A030229).
A072233 counts partitions by sum and length.
A339846 counts factorizations of even length.
A340601 counts partitions of even rank (A340602).
A340785 counts factorizations into even factors.
A340786 counts even-length factorizations into even factors.

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0, [1, 0$3],
          `if`(i<1, [0$4], b(n, i-1)+`if`(i>n, [0$4], (p->
          `if`(irem(i, 2)=0, [p[3], p[4], p[1], p[2]],
              [p[2], p[1], p[4], p[3]]))(b(n-i, i)))))
        end:
    a:= n-> b(2*n$2)[1]:
    seq(a(n), n=0..40);  # Alois P. Heinz, Feb 16 2014
  • Mathematica
    z = 25; m1 = Map[Length[Select[Map[{Count[#, True], Count[#, False]} &,  OddQ[IntegerPartitions[2 #]]], EvenQ[(*Odd*)First[#]] && OddQ[(*Even*)Last[#]] &]] &, Range[z]]; m2 = Map[Length[Select[Map[{Count[#, True], Count[#, False]} &,      OddQ[IntegerPartitions[2 # - 1]]], OddQ[(*Odd*)First[#]] && EvenQ[(*Even*)Last[#]] &]] &, Range[z]]; m3 = Map[Length[Select[Map[{Count[#, True], Count[#, False]} &,
    OddQ[IntegerPartitions[2 #]]], EvenQ[(*Odd*)First[#]] && EvenQ[(*Even*)Last[#]] &]] &, Range[z]] ; m4 = Map[Length[Select[Map[{Count[#, True], Count[#, False]} &,
    OddQ[IntegerPartitions[2 # - 1]]], OddQ[(*Odd*)First[#]] && OddQ[(*Even*)Last[#]] &]] &, Range[z]];
    m1 (* A236559, type EO*)
    m2 (* A160786, type OE*)
    m3 (* A236913, type EE*)
    m4 (* A236914, type OO*)
    (* Peter J. C. Moses, Feb 03 2014 *)
    b[n_, i_] := b[n, i] = If[n == 0, {1, 0, 0, 0}, If[i < 1, {0, 0, 0, 0}, b[n, i - 1] + If[i > n, {0, 0, 0, 0}, Function[p, If[Mod[i, 2] == 0, p[[{3, 4, 1, 2}]], p[[{2, 1, 4, 3}]]]][b[n - i, i]]]]]; a[n_] := b[2*n, 2*n][[1]]; Table[a[n], {n, 0, 40}] (* Jean-François Alcover, Oct 27 2015, after Alois P. Heinz *)
    Table[Length[Select[IntegerPartitions[2n],EvenQ[Length[#]]&]],{n,0,15}] (* Gus Wiseman, Feb 09 2021 *)

Extensions

More terms from Alois P. Heinz, Feb 16 2014

A347446 Number of integer partitions of n with integer alternating product.

Original entry on oeis.org

1, 1, 2, 3, 5, 6, 10, 12, 18, 22, 31, 37, 54, 62, 84, 100, 134, 157, 207, 241, 314, 363, 463, 537, 685, 785, 985, 1138, 1410, 1616, 1996, 2286, 2801, 3201, 3885, 4434, 5363, 6098, 7323, 8329, 9954, 11293, 13430, 15214, 18022, 20383, 24017, 27141, 31893, 35960
Offset: 0

Views

Author

Gus Wiseman, Sep 15 2021

Keywords

Comments

We define the alternating product of a sequence (y_1,...,y_k) to be Product_i y_i^((-1)^(i-1)).

Examples

			The a(1) = 1 through a(7) = 12 partitions:
  (1)  (2)   (3)    (4)     (5)      (6)       (7)
       (11)  (21)   (22)    (41)     (33)      (61)
             (111)  (31)    (221)    (42)      (322)
                    (211)   (311)    (51)      (331)
                    (1111)  (2111)   (222)     (421)
                            (11111)  (411)     (511)
                                     (2211)    (2221)
                                     (3111)    (4111)
                                     (21111)   (22111)
                                     (111111)  (31111)
                                               (211111)
                                               (1111111)
		

Crossrefs

Allowing any reverse-alternating product >= 1 gives A344607.
Allowing any alternating product <= 1 gives A119620, reverse A347443.
Allowing any reverse-alternating product < 1 gives A344608.
The multiplicative version (factorizations) is A347437, reverse A347442.
The odd-length case is A347444, ranked by A347453.
The reverse version is A347445, ranked by A347454.
Allowing any alternating product > 1 gives A347448, reverse A347449.
Ranked by A347457.
The even-length case is A347704.
A000041 counts partitions.
A027187 counts partitions of even length.
A027193 counts partitions of odd length.
A103919 counts partitions by sum and alternating sum (reverse: A344612).
A325534 counts separable partitions, ranked by A335433.
A325535 counts inseparable partitions, ranked by A335448.
A347461 counts possible alternating products of partitions.

Programs

  • Mathematica
    altprod[q_]:=Product[q[[i]]^(-1)^(i-1),{i,Length[q]}];
    Table[Length[Select[IntegerPartitions[n],IntegerQ[altprod[#]]&]],{n,0,30}]

A340601 Number of integer partitions of n of even rank.

Original entry on oeis.org

1, 1, 0, 3, 1, 5, 3, 11, 8, 18, 16, 34, 33, 57, 59, 98, 105, 159, 179, 262, 297, 414, 478, 653, 761, 1008, 1184, 1544, 1818, 2327, 2750, 3480, 4113, 5137, 6078, 7527, 8899, 10917, 12897, 15715, 18538, 22431, 26430, 31805, 37403, 44766, 52556, 62620, 73379
Offset: 0

Views

Author

Gus Wiseman, Jan 21 2021

Keywords

Comments

The Dyson rank of a nonempty partition is its maximum part minus its number of parts. For this sequence, the rank of an empty partition is 0.

Examples

			The a(1) = 1 through a(9) = 18 partitions (empty column indicated by dot):
  (1)  .  (3)    (22)  (5)      (42)    (7)        (44)      (9)
          (21)         (41)     (321)   (43)       (62)      (63)
          (111)        (311)    (2211)  (61)       (332)     (81)
                       (2111)           (322)      (521)     (333)
                       (11111)          (331)      (2222)    (522)
                                        (511)      (4211)    (531)
                                        (2221)     (32111)   (711)
                                        (4111)     (221111)  (4221)
                                        (31111)              (4311)
                                        (211111)             (6111)
                                        (1111111)            (32211)
                                                             (33111)
                                                             (51111)
                                                             (222111)
                                                             (411111)
                                                             (3111111)
                                                             (21111111)
                                                             (111111111)
		

Crossrefs

Note: Heinz numbers are given in parentheses below.
The positive case is A101708 (A340605).
The Heinz numbers of these partitions are A340602.
The odd version is A340692 (A340603).
- Rank -
A047993 counts partitions of rank 0 (A106529).
A072233 counts partitions by sum and length.
A101198 counts partitions of rank 1 (A325233).
A101707 counts partitions of odd positive rank (A340604).
A101708 counts partitions of even positive rank (A340605).
A257541 gives the rank of the partition with Heinz number n.
A340653 counts factorizations of rank 0.
- Even -
A024430 counts set partitions of even length.
A027187 counts partitions of even length (A028260).
A027187 (also) counts partitions of even maximum (A244990).
A034008 counts compositions of even length.
A035363 counts partitions into even parts (A066207).
A052841 counts ordered set partitions of even length.
A058696 counts partitions of even numbers (A300061).
A067661 counts strict partitions of even length (A030229).
A236913 counts even-length partitions of even numbers (A340784).
A339846 counts factorizations of even length.

Programs

  • Maple
    b:= proc(n, i, r) option remember; `if`(n=0, 1-max(0, r),
          `if`(i<1, 0, b(n, i-1, r) +b(n-i, min(n-i, i), 1-
          `if`(r<0, irem(i, 2), r))))
        end:
    a:= n-> b(n$2, -1):
    seq(a(n), n=0..55);  # Alois P. Heinz, Jan 22 2021
  • Mathematica
    Table[If[n==0,1,Length[Select[IntegerPartitions[n],EvenQ[Max[#]-Length[#]]&]]],{n,0,30}]
    (* Second program: *)
    b[n_, i_, r_] := b[n, i, r] = If[n == 0, 1 - Max[0, r], If[i < 1, 0, b[n, i - 1, r] + b[n - i, Min[n - i, i], 1 - If[r < 0, Mod[i, 2], r]]]];
    a[n_] := b[n, n, -1];
    a /@ Range[0, 55] (* Jean-François Alcover, May 10 2021, after Alois P. Heinz *)
  • PARI
    p_q(k) = {prod(j=1, k, 1-q^j); }
    GB_q(N, M)= {if(N>=0 && M>=0,  p_q(N+M)/(p_q(M)*p_q(N)), 0 ); }
    A_q(N) = {my(q='q+O('q^N), g=1+sum(i=1,N, sum(j=1,N/i, q^(i*j) * ( ((1/2)*(1+(-1)^(i+j))) + sum(k=1,N-(i*j), ((q^k)*GB_q(k,i-2)) * ((1/2)*(1+(-1)^(i+j+k)))))))); Vec(g)}
    A_q(50) \\ John Tyler Rascoe, Apr 15 2024

Formula

G.f.: 1 + Sum_{i, j>0} q^(i*j) * ( (1+(-1)^(i+j))/2 + Sum_{k>0} q^k * q_binomial(k,i-2) * (1+(-1)^(i+j+k))/2 ). - John Tyler Rascoe, Apr 15 2024
a(n) ~ exp(Pi*sqrt(2*n/3)) / (8*n*sqrt(3)). - Vaclav Kotesovec, Apr 17 2024

A174725 a(n) = (A074206(n) + A008683(n))/2.

Original entry on oeis.org

1, 0, 0, 1, 0, 2, 0, 2, 1, 2, 0, 4, 0, 2, 2, 4, 0, 4, 0, 4, 2, 2, 0, 10, 1, 2, 2, 4, 0, 6, 0, 8, 2, 2, 2, 13, 0, 2, 2, 10, 0, 6, 0, 4, 4, 2, 0, 24, 1, 4, 2, 4, 0, 10, 2, 10, 2, 2, 0, 22, 0, 2, 4, 16, 2, 6, 0, 4, 2, 6, 0, 38, 0, 2, 4, 4, 2
Offset: 1

Views

Author

Mats Granvik, Mar 28 2010

Keywords

Comments

From Mats Granvik, May 25 2017: (Start)
A074206(n) = A002033(n-1) = a(n) + A174726(n).
A008683(n) = a(n) - A174726(n).
Let m = size of matrix a matrix T, and let T be defined as follows:
T(n,k) = if m = 1 then 1 else if mod(n, k) = 0 then if and(n = k, n = m) then 0 else 1 else if and(n = 1, k = m) then 1 else 0
a(n) is then the number of permutation matrices with a positive contribution in the determinant of matrix T. The determinant of T is equal to the Möbius function A008683, see Mathematica program below for how to compute the determinant.
A174726 is the number of permutation matrices with a negative contribution in the determinant of matrix T.
(End)
From Gus Wiseman, Jan 04 2021: (Start)
Also the number of ordered factorizations of n into an even number of factors > 1. The non-ordered case is A339846. For example, the a(n) factorizations for n = 12, 24, 30, 32, 36 are:
(2*6) (3*8) (5*6) (4*8) (4*9)
(3*4) (4*6) (6*5) (8*4) (6*6)
(4*3) (6*4) (10*3) (16*2) (9*4)
(6*2) (8*3) (15*2) (2*16) (12*3)
(12*2) (2*15) (2*2*2*4) (18*2)
(2*12) (3*10) (2*2*4*2) (2*18)
(2*2*2*3) (2*4*2*2) (3*12)
(2*2*3*2) (4*2*2*2) (2*2*3*3)
(2*3*2*2) (2*3*2*3)
(3*2*2*2) (2*3*3*2)
(3*2*2*3)
(3*2*3*2)
(3*3*2*2)
(End)

Crossrefs

The odd version is A174726.
The unordered version is A339846.
A001055 counts factorizations, with strict case A045778.
A058696 counts partitions of even numbers, ranked by A300061.
A074206 counts ordered factorizations, with strict case A254578.
A251683 counts ordered factorizations by product and length.
Other cases of even length:
- A024430 counts set partitions of even length.
- A027187 counts partitions of even length.
- A034008 counts compositions of even length.
- A052841 counts ordered set partitions of even length.
- A067661 counts strict partitions of even length.
- A332305 counts strict compositions of even length

Programs

  • Mathematica
    (* From Mats Granvik, May 25 2017: (Start) *)
    Clear[t, nn]; nn = 77; t[1, 1] = 1; t[n_, k_] := t[n, k] = If[k == 1, Sum[t[n, k + i], {i, 1, n - 1}], If[Mod[n, k] == 0, t[n/k, 1], 0], 0]; Monitor[Table[Sum[If[Mod[n, k] == 0, MoebiusMu[k]*t[n/k, 1], 0], {k, 1, 77}], {n, 1, nn}], n]
    (* The Möbius function as a determinant *) Table[Det[Table[Table[If[m == 1, 1, If[Mod[n, k] == 0, If[And[n == k, n == m], 0, 1], If[And[n == 1, k == m], 1, 0]]], {k, 1, m}], {n, 1, m}]], {m, 1, 42}]
    (* (End) *)
    ordfacs[n_]:=If[n<=1,{{}},Join@@Table[(Prepend[#1,d]&)/@ordfacs[n/d],{d,Rest[Divisors[n]]}]];
    Table[Length[Select[ordfacs[n],EvenQ@*Length]],{n,100}] (* Gus Wiseman, Jan 04 2021 *)

Formula

a(n) = (Mobius transform of a(n)) + (Mobius transform of A174726). - Mats Granvik, Apr 04 2010
From Mats Granvik, May 25 2017: (Start)
This sequence is the Moebius transform of A074206.
a(n) = (A074206(n) + A008683(n))/2.
(End)
G.f. A(x) satisfies: A(x) = x + Sum_{i>=2} Sum_{j>=2} A(x^(i*j)). - Ilya Gutkovskiy, May 11 2019

Extensions

References to A002033(n-1) changed to A074206(n) by Antti Karttunen, Nov 23 2024

A090864 Complement of generalized pentagonal numbers (A001318).

Original entry on oeis.org

3, 4, 6, 8, 9, 10, 11, 13, 14, 16, 17, 18, 19, 20, 21, 23, 24, 25, 27, 28, 29, 30, 31, 32, 33, 34, 36, 37, 38, 39, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 52, 53, 54, 55, 56, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 71, 72, 73, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84
Offset: 1

Views

Author

Jon Perry, Feb 12 2004

Keywords

Comments

Also n for which A006906(n) is even, or equivalently n for which A000009(n) is even (since A006906 and A000009 have the same parity).
The number of partitions of a(n) into distinct parts with an even number of parts equals the number of such partitions with an odd number of parts: A067661(a(n)) = A067659(a(n)). See, e.g., the Freitag-Busam reference, p. 410 given in A036499. - Wolfdieter Lang, Jan 19 2016

Crossrefs

Programs

  • Mathematica
    Complement[Range[200], Select[Accumulate[Range[0,200]]/3, IntegerQ]] (* G. C. Greubel, Jun 06 2017 *)
  • PARI
    a(n) = my(q,r); [q,r]=divrem(sqrtint(24*n),3); n + q + (r >= bitnegimply(1,q)); \\ Kevin Ryde, Sep 15 2024
  • Python
    from math import isqrt
    def A090864(n):
        def f(x): return n+(m:=isqrt(24*x+1)+1)//6+(m-2)//6
        kmin, kmax = 0,1
        while f(kmax) > kmax:
            kmax <<= 1
        while kmax-kmin > 1:
            kmid = kmax+kmin>>1
            if f(kmid) <= kmid:
                kmax = kmid
            else:
                kmin = kmid
        return kmax # Chai Wah Wu, Aug 29 2024
    

Formula

A080995(a(n)) = 0; A000009(a(n)) = A118303(n). - Reinhard Zumkeller, Apr 22 2006
A010815(a(n)) = A067661(a(n)) - A067659(a(n)) = 0, n >= 1. See a comment above. - Wolfdieter Lang, Jan 19 2016
a(n) = n+1 + A085141(n-1) + A111651(n). - Kevin Ryde, Sep 15 2024

Extensions

More terms from Reinhard Zumkeller, Apr 22 2006
Edited by Ray Chandler, Dec 14 2011
Edited by Jon E. Schoenfield, Nov 25 2016
Showing 1-10 of 52 results. Next