A058895 a(n) = n^4 - n.
0, 0, 14, 78, 252, 620, 1290, 2394, 4088, 6552, 9990, 14630, 20724, 28548, 38402, 50610, 65520, 83504, 104958, 130302, 159980, 194460, 234234, 279818, 331752, 390600, 456950, 531414, 614628, 707252, 809970, 923490, 1048544, 1185888, 1336302, 1500590, 1679580
Offset: 0
Links
- Harry J. Smith, Table of n, a(n) for n = 0..2000
- Milan Janjic, Enumerative Formulas for Some Functions on Finite Sets
- Index entries for linear recurrences with constant coefficients, signature (5,-10,10,-5,1).
Crossrefs
Programs
-
Magma
[n^4-n: n in [0..40]]; // Vincenzo Librandi, Feb 23 2012
-
Maple
seq(n*(n^3-1),n=0..25) ; # R. J. Mathar, Dec 10 2015
-
Mathematica
Table[n^4 - n, {n, 0, 40}] (* Vladimir Joseph Stephan Orlovsky, Feb 20 2012 *)
-
PARI
a(n) = { n^4-n } \\ Harry J. Smith, Jun 23 2009
-
Sage
(2*x^2*(7+4*x+x^2)/(1-x)^5).series(x, 37).coefficients(x, sparse=False) # Stefano Spezia, Jul 09 2021
Formula
a(n) = n*(n-1)*(n^2+n+1) = A000583(n) - n = A002061(n+1) * A002378(n-1) = (n-1) * A027444(n) = -n * A024001(n).
a(n) = 2*A027482(n). - Zerinvary Lajos, Jan 28 2008
a(n) = floor(n^7/(n^3+1)). - Gary Detlefs, Feb 11 2010
a(n)^3 = (a(n)/n)^4 + (a(n)/n)^3. - Vincenzo Librandi, Feb 23 2012
G.f.: 2*x^2*(7 + 4*x + x^2)/(1 - x)^5. - Colin Barker, Apr 23 2012
a(n) = 14*C(n,2) + 36*C(n,3) + 24*C(n,4). - Dennis P. Walsh, Mar 21 2013
Sum_{n>=2} (-1)^n/a(n) = (Pi/3)*sech(Pi*sqrt(3)/2) + 4*log(2)/3 - 1 = 0.06147271494... . - Amiram Eldar, Jul 04 2020
Sum_{n>=2} 1/a(n) = A339605. - R. J. Mathar, Jan 08 2021
E.g.f.: exp(x)*x^2*(7 + 6*x + x^2). - Stefano Spezia, Jul 09 2021
Comments