cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A081733 Triangle read by rows, T(n,k) = 2^(n-k)*[x^k] Euler_polynomial(n, x), for n >= 0, k >= 0.

Original entry on oeis.org

1, -1, 1, 0, -2, 1, 2, 0, -3, 1, 0, 8, 0, -4, 1, -16, 0, 20, 0, -5, 1, 0, -96, 0, 40, 0, -6, 1, 272, 0, -336, 0, 70, 0, -7, 1, 0, 2176, 0, -896, 0, 112, 0, -8, 1, -7936, 0, 9792, 0, -2016, 0, 168, 0, -9, 1, 0, -79360, 0, 32640, 0, -4032, 0, 240, 0, -10, 1, 353792, 0, -436480, 0, 89760, 0, -7392, 0, 330, 0, -11, 1, 0, 4245504, 0
Offset: 0

Views

Author

Wouter Meeussen, Apr 06 2003

Keywords

Comments

Sum of row n equals Euler(n) (in the sense of the non-official version A122045; R. P. Stanley calls A000111 Euler numbers.)

Examples

			The coefficient lists of the first 5 Euler polynomials are {1}, {-1/2, 1}, {0, -1, 1}, {1/4, 0, -3/2, 1}, {0, 1, 0, -2, 1}. Multiply by 2^(n-k) to get
   1,
  -1,  1,
   0, -2,  1,
   2,  0, -3,  1,
   0,  8,  0, -4,  1.
		

Crossrefs

Programs

  • Maple
    T := (n,k) -> 2^(n-k)*coeff(euler(n,x),x,k):
    T := (n,k) -> 2^(n-k)*binomial(n,k)*euler(n-k,1): # Peter Luschny, Jan 25 2009
  • Mathematica
    Table[2^n (1/2)^(Range[0, n]) CoefficientList[EulerE[n, x], x], {n, 0, 16}]
  • Sage
    def A081733(n, k) : return (-2)^(n-k)*binomial(n,k)*euler_polynomial(n-k,1)
    # Peter Luschny, Jul 18 2012

Formula

T(n,k) = C(n,k)*2^(n-k)*E_{n-k}(0) where C(n,k) is the binomial coefficient and E_{m}(x) are the Euler polynomials. - Peter Luschny, Jan 25 2009
Matrix inverse is A119468 and central column is A214447. - Peter Luschny, Jul 18 2012
Let skp{n}(x) denote the Swiss-Knife polynomials A153641. Then T(n,k) = [x^(n-k)]((skp{n}(x-1) - skp{n}(x+1))/2 + x^n). - Peter Luschny, Jul 22 2012
E.g.f.: exp(z*x)*(1-tanh(x)). - Peter Luschny, Aug 01 2012
E.g.f.: [2/(e^(2t)+1)] e^(tx) = e^(P.(x)t), so this is an Appell sequence with lowering operator D = d/dx and raising operator R = x - 2/[e^(-2D)+1], i.e., D P_n(x) = n P_{n-1}(x) and R p_n(x) = P_{n+1}(x). Also, (P.(x)+y)^n = P_n(x+y), umbrally. R = x - 1 - D + 2 D^3/3! + ... contains the e.g.f.(D) mod signs of A009006 and A155585 and signed, aerated A000182, the zag numbers, and P_n(0) are the coefficients (mod signs/shift) of these sequences. The polynomials PI_n(x) of A119468 are the umbral compositional inverses of this sequence, i.e., P_n(PI.(x)) = x^n = PI_n(P.(x)) under umbral composition. Note that 2/[e^(2t)+1] = 2 Sum_{n >= 0} Eta(-n) (-2t)^n/n!], where Eta(s) is the Dirichlet eta function, and b_n = 2 *(-2)^n Eta(-n) = (-1)^n (2^(n+1)-4^(n+1)) Zeta(-n) = (2^(n+1)-4^(n+1)) B(n+1)/(n+1) with Zeta(s), the Riemann zeta function, and B(n), the Bernoulli numbers, so P_n(x) = (b. + x)^n, as an Appell polynomial. - Tom Copeland, Sep 27 2015

Extensions

Corrected T(0,0) = Euler(0) = 1 (was 0), Peter Luschny, Sep 30 2010
New name from Peter Luschny, Jul 18 2012

A326480 T(n, k) = 2^n * n! * [x^k] [z^n] (4*exp(x*z))/(exp(z) + 1)^2, triangle read by rows, for 0 <= k <= n. Coefficients of Euler polynomials of order 2.

Original entry on oeis.org

1, -2, 2, 2, -8, 4, 4, 12, -24, 8, -16, 32, 48, -64, 16, -32, -160, 160, 160, -160, 32, 272, -384, -960, 640, 480, -384, 64, 544, 3808, -2688, -4480, 2240, 1344, -896, 128, -7936, 8704, 30464, -14336, -17920, 7168, 3584, -2048, 256
Offset: 0

Views

Author

Peter Luschny, Jul 11 2019

Keywords

Comments

T(m, n, k) = 2^n * n! * [x^k] [z^n] (2^m*exp(x*z))/(exp(z) + 1)^m are the coefficients of the generalized Euler polynomials (or Euler polynomials of higher order).
The classical case (m=1) is in A004174, this sequence is case m=2. A different normalization for m=1 is given in A058940 and for m=2 in A326485.
Generalized Euler numbers are 2^n*Sum_{k=0..n} T(m, n, k)*(1/2)^k. The classical Euler numbers are in A122045 and for m=2 in A326483.

Examples

			Triangle starts:
[0] [     1]
[1] [    -2,       2]
[2] [     2,      -8,     4]
[3] [     4,      12,   -24,      8]
[4] [   -16,      32,    48,    -64,     16]
[5] [   -32,    -160,   160,    160,   -160,     32]
[6] [   272,    -384,  -960,    640,    480,   -384,    64]
[7] [   544,    3808, -2688,  -4480,   2240,   1344,  -896,   128]
[8] [ -7936,    8704, 30464, -14336, -17920,   7168,  3584, -2048,   256]
[9] [-15872, -142848, 78336, 182784, -64512, -64512, 21504,  9216, -4608, 512]
		

Crossrefs

Let E2_{n}(x) = Sum_{k=0..n} T(n,k) x^k. Then E2_{n}(1) = A155585(n+1),
E2_{n}(0) = A326481(n), E2_{n}(-1) = A326482(n), 2^n*E2_{n}(1/2) = A326483(n),
2^n*E2_{n}(-1/2) = A326484(n), [x^n] E2_{n}(x) = A000079(n).

Programs

  • Maple
    E2 := proc(n) (4*exp(x*z))/(exp(z) + 1)^2;
    series(%, z, 48); 2^n*n!*coeff(%, z, n) end:
    ListTools:-Flatten([seq(PolynomialTools:-CoefficientList(E2(n), x), n=0..9)]);
  • Mathematica
    T[n_, k_] := 2^n n! SeriesCoefficient[4 Exp[x z]/(Exp[z]+1)^2, {z, 0, n}, {x, 0, k}];
    Table[T[n, k], {n, 0, 8}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jul 15 2019 *)

A059341 Triangle giving numerators of coefficients of Euler polynomials, highest powers first.

Original entry on oeis.org

1, 1, -1, 1, -1, 0, 1, -3, 0, 1, 1, -2, 0, 1, 0, 1, -5, 0, 5, 0, -1, 1, -3, 0, 5, 0, -3, 0, 1, -7, 0, 35, 0, -21, 0, 17, 1, -4, 0, 14, 0, -28, 0, 17, 0, 1, -9, 0, 21, 0, -63, 0, 153, 0, -31, 1, -5, 0, 30, 0, -126, 0, 255, 0, -155, 0, 1, -11, 0, 165, 0, -231, 0, 2805, 0, -1705, 0, 691, 1, -6, 0, 55, 0, -396, 0, 1683, 0, -3410, 0, 2073, 0, 1, -13
Offset: 0

Views

Author

N. J. A. Sloane, Jan 27 2001

Keywords

Examples

			1; x-1/2; x^2-x; x^3-3*x^2/2+1/4; ...
		

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 809.
  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 48, [14b].

Crossrefs

Programs

  • Maple
    for n from 0 to 30 do for k from n to 0 by -1 do printf(`%d,`,numer(coeff(euler(n,x), x, k))) od:od:
  • Mathematica
    Numerator[Table[Reverse[CoefficientList[Series[EulerE[n, x], {x, 0, 20}], x]], {n, 0, 10}]]//Flatten (* G. C. Greubel, Jan 07 2017 *)

Extensions

More terms from James Sellers, Jan 29 2001

A059342 Triangle giving denominators of coefficients of Euler polynomials, highest powers first.

Original entry on oeis.org

1, 1, 2, 1, 1, 1, 1, 2, 1, 4, 1, 1, 1, 1, 1, 1, 2, 1, 2, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 4, 1, 2, 1, 8, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 4, 1, 1, 1, 4, 1, 2, 1, 4, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2
Offset: 0

Views

Author

N. J. A. Sloane, Jan 27 2001

Keywords

Examples

			1; x-1/2; x^2-x; x^3-3*x^2/2+1/4; ...
		

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 809.
  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 48, [14b].

Crossrefs

Programs

  • Maple
    for n from 0 to 30 do for k from n to 0 by -1 do printf(`%d,`,denom(coeff(euler(n,x), x, k))) od:od:
  • Mathematica
    Denominator[Table[Reverse[CoefficientList[Series[EulerE[n, x], {x, 0, 20}], x]], {n, 0, 10}]] (* G. C. Greubel, Jan 07 2017 *)

Extensions

More terms from James Sellers, Jan 29 2001
Showing 1-4 of 4 results.