A059201
Number of T_0-covers of a labeled n-set.
Original entry on oeis.org
1, 1, 4, 96, 31692, 2147001636, 9223371991763269704, 170141183460469231473432887375376674952, 57896044618658097711785492504343953920509909728243389682424010192567186540224
Offset: 0
The version with empty edges allowed is
A326939.
The non-covering version is
A326940.
BII-numbers of T_0 set-systems are
A326947.
The same with connected instead of covering is
A326948.
-
Table[Sum[StirlingS1[n + 1, k]*2^(2^(k - 1) - 1), {k, 0, n + 1}], {n,0,5}] (* G. C. Greubel, Dec 28 2016 *)
dual[eds_]:=Table[First/@Position[eds,x],{x,Union@@eds}];
Table[Length[Select[Subsets[Subsets[Range[n],{1,n}]],Union@@#==Range[n]&&UnsameQ@@dual[#]&]],{n,0,3}] (* Gus Wiseman, Aug 13 2019 *)
A059202
Triangle T(n,m) of numbers of m-block T_0-covers of a labeled n-set, m = 0..2^n - 1.
Original entry on oeis.org
1, 0, 1, 0, 0, 3, 1, 0, 0, 3, 29, 35, 21, 7, 1, 0, 0, 0, 140, 1015, 2793, 4935, 6425, 6435, 5005, 3003, 1365, 455, 105, 15, 1, 0, 0, 0, 420, 13965, 126651, 661801, 2533135, 7792200, 20085000, 44307120, 84651840, 141113700, 206251500, 265182300
Offset: 0
[1],
[0,1],
[0,0,3,1],
[0,0,3,29,35,21,7,1],
...
There are 35 4-block T_0-covers of a labeled 3-set.
Binary matrices with distinct rows and columns, various versions:
A059202,
A088309,
A088310,
A088616,
A089673,
A089674,
A093466,
A094000,
A094223,
A116532,
A116539,
A181230,
A259763
-
with(combinat): for n from 0 to 10 do for m from 0 to 2^n-1 do printf(`%d,`,(1/m!)*sum(stirling1(m+1,i)*product(2^(i-1)-1-j, j=0..n-1), i=1..m+1)) od: od:
-
T[n_, m_] = Sum[ StirlingS1[n + 1, i + 1]*Binomial[2^i - 1, m], {i, 0, n}]; Table[T[n, m], {n, 0, 5}, {m, 0, 2^n - 1}] (* G. C. Greubel, Dec 28 2016 *)
A059084
Triangle T(n,m) of number of labeled n-node T_0-hypergraphs with m distinct hyperedges (empty hyperedge included), m=0,1,...,2^n.
Original entry on oeis.org
1, 1, 1, 2, 1, 0, 2, 5, 4, 1, 0, 0, 12, 44, 67, 56, 28, 8, 1, 0, 0, 12, 268, 1411, 4032, 7840, 11392, 12864, 11440, 8008, 4368, 1820, 560, 120, 16, 1, 0, 0, 0, 1120, 20160, 159656, 827092, 3251736, 10389635, 27934400, 64432160, 128980800, 225774640
Offset: 0
Triangle begins:
m 0 1 2 3 4 5 6 7 8 sums A059085(n)
n
0 1 1 2
1 1 2 1 4
1 0 2 5 4 1 12
2 0 0 12 44 67 56 28 8 1 216
There are 12 labeled 3-node T_0-hypergraphs with 2 distinct hyperedges: {{3},{2}}, {{3},{2,3}}, {{2},{2,3}}, {{3},{1}}, {{3},{1,3}}, {{2},{1}}, {{2,3},{1,3}}, {{2},{1,2}}, {{2,3},{1,2}}, {{1},{1,3}}, {{1},{1,2}}, {{1,3},{1,2}}.
-
T[n_, m_] := Sum[StirlingS1[n, i] Binomial[2^i, m], {i, 0, n}]; Table[T[n, m], {n, 0, 5}, {m, 0, 2^n}] // Flatten (* Jean-François Alcover, Sep 02 2016 *)
A059086
Number of labeled T_0-hypergraphs with n distinct hyperedges (empty hyperedge included).
Original entry on oeis.org
2, 5, 30, 18236, 2369751620679, 5960531437867327674541054610203768, 479047836152505670895481842190009123676957243077039693903470634823732317120870101036348
Offset: 0
a(2)=30; There are 30 labeled T_0-hypergraphs with 2 distinct hyperedges (empty hyperedge included): 1 1-node hypergraph, 5 2-node hypergraphs, 12 3-node hypergraphs and 12 4-node hypergraphs.
a(3) = (1/3!)*(2*[2!*e]-3*[4!*e]+[8!*e]) = (1/3!)*(2*5-3*65+109601) = 18236, where [k!*e] := floor (k!*exp(1)).
-
with(combinat): Digits := 1000: for n from 0 to 8 do printf(`%d,`,(1/n!)*sum(stirling1(n, k)*floor((2^k)!*exp(1)), k=0..n)) od:
A059087
Triangle T(n,m) of number of labeled n-node T_0-hypergraphs with m distinct hyperedges (empty hyperedge excluded), m=0,1,...,2^n-1.
Original entry on oeis.org
1, 1, 1, 0, 2, 3, 1, 0, 0, 12, 32, 35, 21, 7, 1, 0, 0, 12, 256, 1155, 2877, 4963, 6429, 6435, 5005, 3003, 1365, 455, 105, 15, 1, 0, 0, 0, 1120, 19040, 140616, 686476, 2565260, 7824375, 20110025, 44322135, 84658665, 141115975, 206252025, 265182375
Offset: 0
Triangle starts:
[1],
[1,1],
[0,2,3,1],
[0,0,12,32,35,21,7,1],
...;
There are 12 labeled 3-node T_0-hypergraphs with 2 distinct hyperedges:{{3},{2}}, {{3},{2,3}}, {{2},{2,3}}, {{3},{1}}, {{3},{1,3}}, {{2},{1}}, {{2,3},{1,3}}, {{2},{1,2}}, {{2,3},{1,2}}, {{1},{1,3}}, {{1},{1,2}}, {{1,3},{1,2}}.
-
T[n_, m_] := Sum[StirlingS1[n, i] Binomial[2^i - 1, m], {i, 0, n}]; Table[T[n, m], {n, 0, 5}, {m, 0, 2^n - 1}] // Flatten (* Jean-François Alcover, Sep 02 2016 *)
A059088
Number of labeled n-node T_0-hypergraphs without multiple hyperedges (empty hyperedge excluded).
Original entry on oeis.org
1, 2, 6, 108, 32076, 2147160096, 9223372004645279520, 170141183460469231537996491317719562880, 57896044618658097711785492504343953921871039195927143534211473291570199939840
Offset: 0
There are 108 labeled 3-node T_0-hypergraphs without multiple hyperedges (empty hyperedge excluded): 12 with 2 hyperedges, 32 with 3 hyperedges,35 with 4 hyperedges, 21 with 5 hyperedges, 7 with 6 hyperedges and 1 with 7 hyperedges.
-
with(combinat): for n from 0 to 15 do printf(`%d,`,(1/2)*sum(stirling1(n,k)*2^(2^k), k= 0..n)) od:
-
Table[Sum[StirlingS1[n, k]*2^((2^k)-1), {k,0,n}], {n,0,10}] (* G. C. Greubel, Oct 06 2017 *)
A059588
a(n)=Sum_{i=0..n} |stirling1(n,i)|*2^(2^i).
Original entry on oeis.org
2, 4, 20, 312, 67272, 4295632512, 18446744138139694080, 340282366920938463850756233731336688000, 115792089237316195423570985008687907862797890939426841022371924616155698285440
Offset: 0
-
with(combinat): for n from 0 to 10 do printf(`%d,`,sum(abs(stirling1(n,i))*2^(2^i), i=0..n)) od:
Showing 1-7 of 7 results.
Comments