A059201
Number of T_0-covers of a labeled n-set.
Original entry on oeis.org
1, 1, 4, 96, 31692, 2147001636, 9223371991763269704, 170141183460469231473432887375376674952, 57896044618658097711785492504343953920509909728243389682424010192567186540224
Offset: 0
The version with empty edges allowed is
A326939.
The non-covering version is
A326940.
BII-numbers of T_0 set-systems are
A326947.
The same with connected instead of covering is
A326948.
-
Table[Sum[StirlingS1[n + 1, k]*2^(2^(k - 1) - 1), {k, 0, n + 1}], {n,0,5}] (* G. C. Greubel, Dec 28 2016 *)
dual[eds_]:=Table[First/@Position[eds,x],{x,Union@@eds}];
Table[Length[Select[Subsets[Subsets[Range[n],{1,n}]],Union@@#==Range[n]&&UnsameQ@@dual[#]&]],{n,0,3}] (* Gus Wiseman, Aug 13 2019 *)
A181230
Square array T(m,n) giving the number of m X n (0,1)-matrices with pairwise distinct rows and pairwise distinct columns.
Original entry on oeis.org
2, 2, 2, 0, 10, 0, 0, 24, 24, 0, 0, 24, 264, 24, 0, 0, 0, 1608, 1608, 0, 0, 0, 0, 6720, 33864, 6720, 0, 0, 0, 0, 20160, 483840, 483840, 20160, 0, 0, 0, 0, 40320, 5644800, 19158720, 5644800, 40320, 0, 0, 0, 0, 40320, 57415680, 595506240, 595506240, 57415680, 40320
Offset: 1
Table starts
.2..2.....0...........0...............0..................0
.2.10....24..........24...............0..................0
.0.24...264........1608............6720..............20160
.0.24..1608.......33864..........483840............5644800
.0..0..6720......483840........19158720..........595506240
.0..0.20160.....5644800.......595506240........44680224960
.0..0.40320....57415680.....16388749440......2881362718080
.0..0.40320...518676480....418910083200....172145618789760
.0..0.....0..4151347200..10136835072000...9841604944066560
.0..0.....0.29059430400.233811422208000.546156941728204800
Binary matrices with distinct rows and columns, various versions:
A059202,
A088309,
A088310,
A088616,
A089673,
A089674,
A093466,
A094000,
A094223,
A116532,
A116539,
A181230,
A259763
A059202
Triangle T(n,m) of numbers of m-block T_0-covers of a labeled n-set, m = 0..2^n - 1.
Original entry on oeis.org
1, 0, 1, 0, 0, 3, 1, 0, 0, 3, 29, 35, 21, 7, 1, 0, 0, 0, 140, 1015, 2793, 4935, 6425, 6435, 5005, 3003, 1365, 455, 105, 15, 1, 0, 0, 0, 420, 13965, 126651, 661801, 2533135, 7792200, 20085000, 44307120, 84651840, 141113700, 206251500, 265182300
Offset: 0
[1],
[0,1],
[0,0,3,1],
[0,0,3,29,35,21,7,1],
...
There are 35 4-block T_0-covers of a labeled 3-set.
Binary matrices with distinct rows and columns, various versions:
A059202,
A088309,
A088310,
A088616,
A089673,
A089674,
A093466,
A094000,
A094223,
A116532,
A116539,
A181230,
A259763
-
with(combinat): for n from 0 to 10 do for m from 0 to 2^n-1 do printf(`%d,`,(1/m!)*sum(stirling1(m+1,i)*product(2^(i-1)-1-j, j=0..n-1), i=1..m+1)) od: od:
-
T[n_, m_] = Sum[ StirlingS1[n + 1, i + 1]*Binomial[2^i - 1, m], {i, 0, n}]; Table[T[n, m], {n, 0, 5}, {m, 0, 2^n - 1}] (* G. C. Greubel, Dec 28 2016 *)
A088309
Number of equivalence classes of n X n (0,1)-matrices with all rows distinct and all columns distinct.
Original entry on oeis.org
1, 2, 5, 44, 1411, 159656, 62055868, 82060884560, 371036717493194, 5812014504668066528, 320454239459072905856944, 63156145369562679089674952768, 45090502574837184532027563736271152, 117910805393665959622047902193019284914432, 1139353529410754170844431642119963019965901238144
Offset: 0
a(2) = 5: 00/01, 00/10, 01/10, 01/11, 10/11.
Binary matrices with distinct rows and columns, various versions:
A059202, this sequence,
A088310,
A088616,
A089673,
A089674,
A093466,
A094000,
A094223,
A116532,
A116539,
A181230,
A259763.
-
A088309:= func< n | (&+[Binomial(2^k,n)*StirlingFirst(n,k): k in [0..n]]) >;
[A088309(n): n in [0..30]]; // G. C. Greubel, Dec 15 2022
-
A088309[n_]:= A088309[n]=Sum[Binomial[2^j,n]*StirlingS1[n,j], {j,0,n}];
Table[A088309[n], {n,0,30}] (* G. C. Greubel, Dec 15 2022 *)
-
a(n) = sum(k=0, n, stirling(n, k, 1)*binomial(2^k, n)); \\ Michel Marcus, Dec 16 2022
-
@CachedFunction
def A088309(n): return (-1)^n*sum((-1)^k*binomial(2^k, n)*stirling_number1(n, k) for k in (0..n))
[A088309(n) for n in range(31)] # G. C. Greubel, Dec 15 2022
Suggested by Yuval Dekel (dekelyuval(AT)hotmail.com), Nov 06 2003
A059085
Number of labeled n-node T_0-hypergraphs without multiple hyperedges (empty hyperedge included).
Original entry on oeis.org
2, 4, 12, 216, 64152, 4294320192, 18446744009290559040, 340282366920938463075992982635439125760, 115792089237316195423570985008687907843742078391854287068422946583140399879680
Offset: 0
There are 216 labeled 3-node T_0-hypergraphs without multiple hyperedges (empty hyperedge included): 12 with 2 hyperedges, 44 with 3 hyperedges,67 with 4 hyperedges, 56 with 5 hyperedges, 28 with 6 hyperedges, 8 with 7 hyperedges and 1 with 8 hyperedges.
-
with(combinat): for n from 0 to 15 do printf(`%d,`,sum(stirling1(n,k)*2^(2^k), k=0..n)) od:
A059086
Number of labeled T_0-hypergraphs with n distinct hyperedges (empty hyperedge included).
Original entry on oeis.org
2, 5, 30, 18236, 2369751620679, 5960531437867327674541054610203768, 479047836152505670895481842190009123676957243077039693903470634823732317120870101036348
Offset: 0
a(2)=30; There are 30 labeled T_0-hypergraphs with 2 distinct hyperedges (empty hyperedge included): 1 1-node hypergraph, 5 2-node hypergraphs, 12 3-node hypergraphs and 12 4-node hypergraphs.
a(3) = (1/3!)*(2*[2!*e]-3*[4!*e]+[8!*e]) = (1/3!)*(2*5-3*65+109601) = 18236, where [k!*e] := floor (k!*exp(1)).
-
with(combinat): Digits := 1000: for n from 0 to 8 do printf(`%d,`,(1/n!)*sum(stirling1(n, k)*floor((2^k)!*exp(1)), k=0..n)) od:
A059087
Triangle T(n,m) of number of labeled n-node T_0-hypergraphs with m distinct hyperedges (empty hyperedge excluded), m=0,1,...,2^n-1.
Original entry on oeis.org
1, 1, 1, 0, 2, 3, 1, 0, 0, 12, 32, 35, 21, 7, 1, 0, 0, 12, 256, 1155, 2877, 4963, 6429, 6435, 5005, 3003, 1365, 455, 105, 15, 1, 0, 0, 0, 1120, 19040, 140616, 686476, 2565260, 7824375, 20110025, 44322135, 84658665, 141115975, 206252025, 265182375
Offset: 0
Triangle starts:
[1],
[1,1],
[0,2,3,1],
[0,0,12,32,35,21,7,1],
...;
There are 12 labeled 3-node T_0-hypergraphs with 2 distinct hyperedges:{{3},{2}}, {{3},{2,3}}, {{2},{2,3}}, {{3},{1}}, {{3},{1,3}}, {{2},{1}}, {{2,3},{1,3}}, {{2},{1,2}}, {{2,3},{1,2}}, {{1},{1,3}}, {{1},{1,2}}, {{1,3},{1,2}}.
-
T[n_, m_] := Sum[StirlingS1[n, i] Binomial[2^i - 1, m], {i, 0, n}]; Table[T[n, m], {n, 0, 5}, {m, 0, 2^n - 1}] // Flatten (* Jean-François Alcover, Sep 02 2016 *)
A059089
Number of labeled T_0-hypergraphs with n distinct hyperedges (empty hyperedge excluded).
Original entry on oeis.org
2, 3, 27, 18209, 2369751602470, 5960531437867327674538684858601298, 479047836152505670895481842190009123676957243077039687942939196956404642582185242435050
Offset: 0
a(2)=27; There are 27 labeled T_0-hypergraphs with 2 distinct hyperedges (empty hyperedge excluded): 3 2-node hypergraphs, 12 3-node hypergraphs and 12 4-node hypergraphs.
a(3) = (1/3!)*(-6*[1!*e]+11*[2!*e]-6*[4!*e]+[8!*e]) = (1/3!)*(-6*2+11*5-6*65+109601) = 18209, where [k!*e] := floor(k!*exp(1)).
-
with(combinat): Digits := 1000: for n from 0 to 8 do printf(`%d,`,(1/n!)*sum(stirling1(n+1,k)*floor((2^(k-1))!*exp(1)), k=0..n+1)) od:
A059088
Number of labeled n-node T_0-hypergraphs without multiple hyperedges (empty hyperedge excluded).
Original entry on oeis.org
1, 2, 6, 108, 32076, 2147160096, 9223372004645279520, 170141183460469231537996491317719562880, 57896044618658097711785492504343953921871039195927143534211473291570199939840
Offset: 0
There are 108 labeled 3-node T_0-hypergraphs without multiple hyperedges (empty hyperedge excluded): 12 with 2 hyperedges, 32 with 3 hyperedges,35 with 4 hyperedges, 21 with 5 hyperedges, 7 with 6 hyperedges and 1 with 7 hyperedges.
-
with(combinat): for n from 0 to 15 do printf(`%d,`,(1/2)*sum(stirling1(n,k)*2^(2^k), k= 0..n)) od:
-
Table[Sum[StirlingS1[n, k]*2^((2^k)-1), {k,0,n}], {n,0,10}] (* G. C. Greubel, Oct 06 2017 *)
A059203
Number of n-block T_0-covers of a labeled set.
Original entry on oeis.org
1, 1, 6, 2270, 148109472315, 186266607433353989829111737621541, 7485122439882901107741903784218892557452456923078744798141861944074340339271507786827
Offset: 0
a(4) = 1 + (1/4!)*( - 50*[1!*e] + 35*[3!*e] - 10*[7!*e] + [15!*e]) = 1 + (1/4!)*( - 50*2 + 35*16 - 10*13700 + 3554627472076) = 148109472315, where [k!*e] := floor(k!*exp(1)).
-
with(combinat): Digits := 1500: f := n->(-1)^n+(1/n!)*sum(stirling1(n+1,i)*floor((2^(i-1)-1)!*exp(1)), i=2..n+1): for n from 1 to 10 do printf(`%d,`,f(n)) od:
-
a[0] := 1; a[n_] := (-1)^n + (1/n!)*Sum[StirlingS1[n + 1, k]*Floor[(2^(k - 1) - 1)!*E], {k, 2, n + 1}]; Table[a[n], {n, 0, 5}] (* G. C. Greubel, Dec 28 2016 *)
Showing 1-10 of 13 results.
Comments