cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A058809 The sequence lambda(3,n), where lambda is defined in A055203. Number of ways of placing n identifiable positive intervals with a total of exactly three starting and/or finishing points.

Original entry on oeis.org

0, 0, 6, 24, 78, 240, 726, 2184, 6558, 19680, 59046, 177144, 531438, 1594320, 4782966, 14348904, 43046718, 129140160, 387420486, 1162261464, 3486784398, 10460353200, 31381059606, 94143178824, 282429536478, 847288609440
Offset: 0

Views

Author

N. J. A. Sloane, Jan 03 2001

Keywords

Comments

For all n, a(n)=1*3^n-3*1^n+3*0^n-1*0^n [with 0^0=1] where powers are taken of triangular numbers and multiplied by binomial coefficients with alternating signs. - Henry Bottomley, Jan 05 2001
For n>=1, a(n) is the number of facets of the harmonic polytope. See Ardila and Escobar. - Michel Marcus, Jun 08 2020
For n >= 3, this is the number of acyclic orientations of the wheel graph of order n+1. - Peter Kagey, Oct 13 2020
Number of ternary strings of length n with at least 2 different digits. - Enrique Navarrete, Nov 20 2020
A level 1 Hanoi graph is a triangle. Level n+1 is formed from three copies of level n by adding edges between pairs of corner vertices of each pair of triangles. This graph represents the allowable moves in the Towers of Hanoi problem with n disks. a(n) is the number of degree 3 vertices in the level n Hanoi graph. - Allan Bickle, Aug 07 2024

Examples

			a(2)=6 since intervals a-a and b-b can be combined as a-ab-b, a-b-ab, ab-a-b, b-ab-a, b-a-ab, or ab-b-a.
The level 2 Hanoi graph has 9 vertices, 6 with degree 3, so a(2) = 6.
		

Crossrefs

Cf. A000225, A029858, A058809, A375256 (Hanoi graphs).

Programs

  • Mathematica
    Join[{0},NestList[3#+6&,0,30]] (* or *) Join[{0},LinearRecurrence[{4,-3},{0,6},30]] (* Harvey P. Dale, Sep 29 2013 *)
  • PARI
    concat([0,0], Vec(6*x^2 / ((1 - x)*(1 - 3*x)) + O(x^30))) \\ Colin Barker, Oct 14 2020

Formula

For n>0, a(n) = 3^n-3 = 3*a(n-1)+6.
a(0)=0, a(1)=0, a(2)=6, a(n) = 4*a(n-1)-3*a(n-2). - Harvey P. Dale, Sep 29 2013
G.f.: 6*x^2 / ((1 - x)*(1 - 3*x)). - Colin Barker, Oct 14 2020

A059117 Square array of lambda(k,n), where lambda is defined in A055203. Number of ways of placing n identifiable positive intervals with a total of exactly k starting and/or finishing points.

Original entry on oeis.org

1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 6, 1, 0, 0, 0, 0, 6, 24, 1, 0, 0, 0, 0, 0, 114, 78, 1, 0, 0, 0, 0, 0, 180, 978, 240, 1, 0, 0, 0, 0, 0, 90, 4320, 6810, 726, 1, 0, 0, 0, 0, 0, 0, 8460, 63540, 43746, 2184, 1, 0, 0, 0, 0, 0, 0, 7560, 271170, 774000, 271194, 6558, 1
Offset: 0

Views

Author

Henry Bottomley, Jan 05 2001

Keywords

Examples

			Rows are: 1,0,0,0,0,0,....; 0,0,1,0,0,0,....; 0,0,1,6,6,0,....; 0,0,1,24,114,180,.... etc.
		

Crossrefs

Sum of rows gives A055203. Columns include A000007, A057427, A058809, A059116. Final positive number in each row is A000680.

Programs

  • Mathematica
    A[ n_, k_] := If[n < 1 || k < 1, Boole[n == 0 && k == 0], n! k! Coefficient[ Normal[ Series[ Sum[ Exp[-x z] (x z)^m/m! Exp[y z m (m - 1)/2], {m, 0, n}], {z, 0, n + k}]], x^n y^k z^(n + k)]]; (* Michael Somos, Jul 17 2019 *)

Formula

lambda(k, n) = (lambda(k - 2, n - 1) + 2*lambda(k - 2, n - 1) + lambda(k - 2, n - 1))*k*(k - 1)/2 starting with lambda(k, 0) = 1 if k = 0 but = 0 otherwise. lambda(k, n) = sum_{j=0..k} (-1)^(k + j) * C(k, j) * ((j - 1)*j/2)^n.

A059517 The sequence A059515(3,n). Number of ways of placing n identifiable nonnegative intervals with a total of exactly three starting and/or finishing points.

Original entry on oeis.org

0, 0, 12, 138, 1056, 7050, 44472, 273378, 1659936, 10018650, 60289032, 362265618, 2175188016, 13055911050, 78349815192, 470141937858, 2820980767296, 16926272024250, 101558794406952, 609356253226098, 3656147979709776, 21936919259318250, 131621609699088312
Offset: 0

Views

Author

Henry Bottomley, Jan 19 2001

Keywords

Examples

			a(2)=12 since if aA indicates a zero length interval and a-A one of positive length the possibilities are: aA-b-B, b-aA-B, b-B-aA, bB-a-A, a-bB-A, a-A-bB, ab-A-B, ab-B-A, a-b-AB, b-a-AB, a-bA-B, b-a-AB.
		

Crossrefs

Cf. A059516.

Programs

  • PARI
    concat([0,0], Vec(-6*x^2*(3*x+2)/((x-1)*(3*x-1)*(6*x-1)) + O(x^100))) \\ Colin Barker, Sep 13 2014

Formula

a(n) = A058809(n)+A059116(n) = 6^n-3*3^n+3 (for n>0).
a(n) = 10*a(n-1)-27*a(n-2)+18*a(n-3) for n>3. - Colin Barker, Sep 13 2014
G.f.: -6*x^2*(3*x+2) / ((x-1)*(3*x-1)*(6*x-1)). - Colin Barker, Sep 13 2014

Extensions

More terms from Colin Barker, Sep 13 2014
Showing 1-3 of 3 results.