A059370
Triangle of numbers obtained by inverting infinite matrix defined in A059369, read from right to left.
Original entry on oeis.org
1, 1, -2, 1, -4, 2, 1, -6, 8, -4, 1, -8, 18, -16, -4, 1, -10, 32, -44, 12, -48, 1, -12, 50, -96, 72, -96, -336, 1, -14, 72, -180, 216, -216, -480, -2928, 1, -16, 98, -304, 500, -544, -376, -4672, -28144, 1, -18, 128, -476, 996, -1312, 256, -5856, -45520, -298528
Offset: 0
Triangle starts
1;
1, -2;
1, -4, 2;
1, -6, 8, -4;
1, -8, 18, -16, -4;
1, -10, 32, -44, 12, -48;
1, -12, 50, -96, 72, -96, -336;
1, -14, 72, -180, 216, -216, -480, -2928;
1, -16, 98, -304, 500, -544, -376, -4672, -28144;
1, -18, 128, -476, 996, -1312, 256, -5856, -45520, -298528;
... - _Joerg Arndt_, Apr 20 2013
-
nmax = 10; t[n_, k_] := t[n, k] = Sum[(m+1)!*t[n-m-1, k-1], {m, 0, n-k}]; t[n_, 1] = n!; t[n_, n_] = 1; tnk = Table[t[n, k], {n, 1, nmax}, {k, 1, nmax}]; Reverse /@ Inverse[tnk] // DeleteCases[#, 0, 2]& // Flatten (* Jean-François Alcover, Jun 14 2013 *)
A090238
Triangle T(n, k) read by rows. T(n, k) is the number of lists of k unlabeled permutations whose total length is n.
Original entry on oeis.org
1, 0, 1, 0, 2, 1, 0, 6, 4, 1, 0, 24, 16, 6, 1, 0, 120, 72, 30, 8, 1, 0, 720, 372, 152, 48, 10, 1, 0, 5040, 2208, 828, 272, 70, 12, 1, 0, 40320, 14976, 4968, 1576, 440, 96, 14, 1, 0, 362880, 115200, 33192, 9696, 2720, 664, 126, 16, 1, 0, 3628800, 996480, 247968, 64704, 17312, 4380, 952, 160, 18, 1
Offset: 0
Triangle begins:
1;
0, 1;
0, 2, 1;
0, 6, 4, 1;
0, 24, 16, 6, 1;
0, 120, 72, 30, 8, 1;
0, 720, 372, 152, 48, 10, 1;
0, 5040, 2208, 828, 272, 70, 12, 1;
0, 40320, 14976, 4968, 1576, 440, 96, 14, 1;
0, 366880, 115200, 33192, 9696, 2720, 664, 126, 16, 1;
0, 3628800, 996480, 247968, 64704, 17312, 4380, 952, 160, 18, 1;
...
- L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 171, #34.
-
T := proc(n,k) option remember; if n=0 and k=0 then return 1 fi;
if n>0 and k=0 or k>0 and n=0 then return 0 fi;
T(n-1,k-1)+(n+k-1)*T(n-1,k)/k end:
for n from 0 to 10 do seq(T(n,k),k=0..n) od; # Peter Luschny, Mar 03 2016
# Uses function PMatrix from A357368.
PMatrix(10, factorial); # Peter Luschny, Oct 09 2022
-
T[n_, k_] := T[n, k] = T[n-1, k-1] + ((n+k-1)/k)*T[n-1, k]; T[0, 0] = 1; T[, 0] = T[0, ] = 0;
Table[T[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jun 20 2018 *)
A059371
a(n) = (n-1)! + ((n+1)/2)*a(n-1), a(1)=0.
Original entry on oeis.org
1, 4, 16, 72, 372, 2208, 14976, 115200, 996480, 9607680, 102366720, 1195568640, 15193785600, 208728576000, 3081867264000, 48659595264000, 817953583104000, 14581909536768000, 274755150544896000, 5455208664170496000, 113825841809670144000
Offset: 2
- L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 171, #34.
Second diagonal of triangle in
A059369.
-
series(hypergeom([1,2],[],x)^2, x=0, 30); # Mark van Hoeij, Apr 20 2013
-
Rest[Rest[CoefficientList[Series[(x^2-2*x-2*Log[1-x])/(x-2)^2, {x, 0, 20}], x]* Range[0, 20]!]] (* Vaclav Kotesovec, Aug 11 2013 *)
Table[-2 n! - 2 (n + 1)! Re[LerchPhi[2, 1, 2 + n]], {n, 2, 10}] (* Vladimir Reshetnikov, Oct 17 2015 *)
Table[2*Sum[(2^k - 1) * Abs[StirlingS1[n, k]] * BernoulliB[k], {k, 0, n}], {n, 3,
25}] (* Vaclav Kotesovec, Oct 04 2022 *)
-
a(n)=sum(i=1,n-1,i!*(n-i)!) \\ Jon Perry, May 06 2006
-
{ a=0; for (n = 2, 200, write("b059371.txt", n, " ", a = (n - 1)! + a*(n + 1)/2); ) } \\ Harry J. Smith, Jun 26 2009
More terms from Larry Reeves (larryr(AT)acm.org), Jan 31 2001
Showing 1-3 of 3 results.
Comments