A001469
Genocchi numbers (of first kind); unsigned coefficients give expansion of x*tan(x/2).
Original entry on oeis.org
-1, 1, -3, 17, -155, 2073, -38227, 929569, -28820619, 1109652905, -51943281731, 2905151042481, -191329672483963, 14655626154768697, -1291885088448017715, 129848163681107301953, -14761446733784164001387, 1884515541728818675112649, -268463531464165471482681379
Offset: 1
- L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 49.
- L. Euler, Institutionum Calculi Differentialis, volume 2 (1755), para. 181.
- A. Fletcher, J. C. P. Miller, L. Rosenhead and L. J. Comrie, An Index of Mathematical Tables. Vols. 1 and 2, 2nd ed., Blackwell, Oxford and Addison-Wesley, Reading, MA, 1962, Vol. 1, p. 73.
- A. Genocchi, Intorno all'espressione generale de'numeri Bernulliani, Ann. Sci. Mat. Fis., 3 (1852), 395-405.
- R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics. Addison-Wesley, Reading, MA, 1990, p. 528.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see Problem 5.8.
- Seiichi Manyama, Table of n, a(n) for n = 1..275 (first 100 terms from T. D. Noe)
- F. Alayont and N. Krzywonos, Rook Polynomials in Three and Higher Dimensions, 2012.
- R. C. Archibald, Review of Terrill-Terrill paper, Math. Comp., 1 (1945), pp. 385-386.
- R. B. Brent, Generalizing Tuenter's Binomial Sums, J. Int. Seq. 18 (2015) # 15.3.2.
- Alexander Burstein, Sergi Elizalde and Toufik Mansour, Restricted Dumont permutations, Dyck paths and noncrossing partitions, arXiv:math/0610234 [math.CO], 2006.
- M. Domaratzki, A Generalization of the Genocchi Numbers with Applications to ...
- M. Domaratzki, Combinatorial Interpretations of a Generalization of the Genocchi Numbers, Journal of Integer Sequences, Vol. 7 (2004), Article 04.3.6.
- D. Dumont, Sur une conjecture de Gandhi concernant les nombres de Genocchi, (in French), Discrete Mathematics 1 (1972) 321-327.
- D. Dumont, Interprétations combinatoires des nombres de Genocchi, Duke Math. J., 41 (1974), 305-318.
- D. Dumont, Interprétations combinatoires des nombres de Genocchi, Duke Math. J., 41 (1974), 305-318. (Annotated scanned copy)
- Dominique Dumont and Arthur Randrianarivony, Sur une extension des nombres de Genocchi, European J. Combin. 16 (1995), 147-151.
- Dominique Dumont and Arthur Randrianarivony, Dérangements et nombres de Genocchi, Discrete Math. 132 (1994), 37-49.
- Richard Ehrenborg and Einar Steingrímsson, Yet another triangle for the Genocchi numbers, European J. Combin. 21 (2000), no. 5, 593-600. MR1771988 (2001h:05008).
- J. M. Gandhi, Research Problems: A Conjectured Representation of Genocchi Numbers, Amer. Math. Monthly 77 (1970), no. 5, 505-506. MR1535914.
- I. M. Gessel, Applications of the classical umbral calculus, arXiv:math/0108121 [math.CO], 2001.
- Ira M. Gessel, On the Almkvist-Meurman Theorem for Bernoulli Polynomials, Integers (2023) Vol. 23, #A14.
- Ira M. Gessel, A short proof of the Almkvist-Meurman theorem, arXiv:2310.15312 [math.NT], 2023.
- René Gy, Bernoulli-Stirling Numbers, Integers (2020) Vol. 20, #A67.
- J. M. Hammersley, An undergraduate exercise in manipulation, Math. Scientist, 14 (1989), 1-23.
- J. M. Hammersley, An undergraduate exercise in manipulation, Math. Scientist, 14 (1989), 1-23. (Annotated scanned copy)
- Gábor Hetyei, Alternation acyclic tournaments, arXiv:math/1704.07245 [math.CO], 2017.
- G. Kreweras, Sur les permutations comptées par les nombres de Genocchi de 1-ière et 2-ième espèce, Europ. J. Comb., vol. 18, pp. 49-58, 1997.
- D. H. Lehmer, Lacunary recurrence formulas for the numbers of Bernoulli and Euler, Annals Math., 36 (1935), 637-649.
- H. Liang and Wuyungaowa, Identities Involving Generalized Harmonic Numbers and Other Special Combinatorial Sequences, J. Int. Seq. 15 (2012) #12.9.6
- Qui-Ming Luo, Fourier expansions and integral representations for Genocchi Polynomials, JIS 12 (2009) 09.1.4.
- T. Mansour, Restricted 132-Dumont permutations, arXiv:math/0209379 [math.CO], 2002.
- A. Randrianarivony and J. Zeng, Une famille de polynomes qui interpole plusieurs suites..., Adv. Appl. Math. 17 (1996), 1-26.
- John Riordan and Paul R. Stein, Proof of a conjecture on Genocchi numbers, Discrete Math. 5 (1973), 381-388. MR0316372 (47 #4919).
- N. J. A. Sloane, Rough notes on Genocchi numbers
- H. M. Terrill and E. M. Terrill, Tables of numbers related to the tangent coefficients, J. Franklin Inst., 239 (1945), 66-67.
- H. M. Terrill and E. M. Terrill, Tables of numbers related to the tangent coefficients, J. Franklin Inst., 239 (1945), 64-67. [Annotated scanned copy]
- Hans J. H. Tuenter, Walking into an absolute sum, arXiv:math/0606080 [math.NT], 2006. Published version on Walking into an absolute sum, The Fibonacci Quarterly, 40(2):175-180, May 2002.
- G. Viennot, Interprétations combinatoires des nombres d'Euler et de Genocchi, Séminaire de théorie des nombres, 1980/1981, Exp. No. 11, p. 41, Univ. Bordeaux I, Talence, 1982.
- Eric Weisstein's World of Mathematics, Genocchi Number.
- J. Worpitsky, Studien ueber die Bernoullischen und Eulerschen Zahlen, Journal für die reine undangewandte Mathematik (Crelle), 94 (1883), 203-232. See page 232. [Annotated scanned copy]
- Index entries for sequences related to Bernoulli numbers.
-
[2*(1 - 4^n) * Bernoulli(2*n): n in [1..25]]; // Vincenzo Librandi, Oct 15 2018
-
A001469 := proc(n::integer) (2*n)!*coeftayl( 2*x/(exp(x)+1), x=0,2*n) end proc:
for n from 1 to 20 do print(A001469(n)) od : # R. J. Mathar, Jun 22 2006
-
a[n_] := 2*(1-4^n)*BernoulliB[2n]; Table[a[n], {n, 17}] (* Jean-François Alcover, Nov 24 2011 *)
a[n_] := 2*n*EulerE[2*n-1, 0]; Table[a[n], {n, 17}] (* Jean-François Alcover, Jul 02 2013 *)
Table[4 n PolyLog[1 - 2 n, -1], {n, 1, 19}] (* Peter Luschny, Aug 17 2021 *)
-
a(n)=if(n<1,0,n*=2; 2*(1-2^n)*bernfrac(n))
-
{a(n)=polcoeff(sum(m=0, n, m!^2*(-x)^(m+1)/prod(k=1, m, 1-k^2*x+x*O(x^n))), n)} /* Paul D. Hanna, Jul 21 2011 */
-
from sympy import bernoulli
def A001469(n): return (2-(2<<(m:=n<<1)))*bernoulli(m) # Chai Wah Wu, Apr 14 2023
-
# Algorithm of L. Seidel (1877)
# n -> [a(1), ..., a(n)] for n >= 1.
def A001469_list(n) :
D = [0]*(n+2); D[1] = -1
R = []; b = False
for i in(0..2*n-1) :
h = i//2 + 1
if b :
for k in range(h-1, 0, -1) : D[k] -= D[k+1]
else :
for k in range(1, h+1, 1) : D[k] -= D[k-1]
b = not b
if not b : R.append(D[h])
return R
A001469_list(17) # Peter Luschny, Jun 29 2012
A110501
Unsigned Genocchi numbers (of first kind) of even index.
Original entry on oeis.org
1, 1, 3, 17, 155, 2073, 38227, 929569, 28820619, 1109652905, 51943281731, 2905151042481, 191329672483963, 14655626154768697, 1291885088448017715, 129848163681107301953, 14761446733784164001387, 1884515541728818675112649, 268463531464165471482681379
Offset: 1
E.g.f.: x*tan(x/2) = x^2/2! + x^4/4! + 3*x^6/6! + 17*x^8/8! + 155*x^10/10! + ...
O.g.f.: A(x) = x + x^2 + 3*x^3 + 17*x^4 + 155*x^5 + 2073*x^6 + ...
where A(x) = x + x^2/(1+x) + 2!^2*x^3/((1+x)*(1+4*x)) + 3!^2*x^4/((1+x)*(1+4*x)*(1+9*x)) + 4!^2*x^5/((1+x)*(1+4*x)*(1+9*x)*(1+16*x)) + ... . - _Paul D. Hanna_, Jul 21 2011
From _Gary W. Adamson_, Jul 19 2011: (Start)
The first few rows of production matrix M are:
1, 2, 0, 0, 0, 0, ...
1, 3, 3, 0, 0, 0, ...
1, 4, 6, 4, 0, 0, ...
1, 5, 10, 10, 5, 0, ...
1, 6, 15, 20, 15, 6, ... (End)
- L. Carlitz, A conjecture concerning Genocchi numbers. Norske Vid. Selsk. Skr. (Trondheim) 1971, no. 9, 4 pp. MR0297697 (45 #6749)
- L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 49.
- Leonhard Euler, Institutionum Calculi Differentialis, volume 2 (1755), para. 181.
- A. Genocchi, Intorno all'espressione generale de'numeri Bernulliani, Ann. Sci. Mat. Fis., 3 (1852), 395-405.
- R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2 (1999) p. 74; see Problem 5.8.
- Alan Sokal, Table of n, a(n) for n = 1..250 (terms up to a(100) from Alois P. Heinz)
- F. Alayont and N. Krzywonos, Rook Polynomials in Three and Higher Dimensions, to appear in Involve
- F. Alayont, R. Moger-Reischer and R. Swift, Rook Number Interpretations of Generalized Central Factorial and Genocchi Numbers, preprint, 2012.
- R. C. Archibald, Review of Terrill-Terrill paper, Math. Comp., 1 (1945), pp. 385-386.
- A. Ayyer, D. Hathcock and P. Tetali, Toppleable Permutations, Excedances and Acyclic Orientations, arXiv:2010.11236 [math.CO], 2020.
- Peter Bala, A triangle for calculating the Genocchi numbers
- Ange Bigeni, A bijection between the irreducible k-shapes and the surjective pistols of height k-1, arXiv preprint arXiv:1402.1383 [math.CO] (2014). Also Discrete Math., 338 (2015), 1432-1448.
- Ange Bigeni, Enumerating the symplectic Dellac configurations, arXiv:1705.03804 [math.CO], 2017.
- Ange Bigeni, The universal sl2 weight system and the Kreweras triangle, arXiv:1712.05475 [math.CO], 2017.
- Ange Bigeni, Combinatorial interpretations of the Kreweras triangle in terms of subset tuples, arXiv:1712.01929 [math.CO], 2017.
- Ange Bigeni, A generalization of the Kreweras triangle through the universal sl_2 weight system, Journal of Combinatorial Theory, Series A (2019) Vol. 161, 309-326.
- A. Burstein, M. Josuat-Vergès and W. Stromquist, New Dumont permutations, Pure Math. Appl. (Pu.M.A.) 21 (2010), no. 2, 177-206.
- E. Clark and R. Ehrenborg, The excedance algebra, Discr. Math., 313 (2013), 1429-1435.
- Bishal Deb and Alan D. Sokal, Classical continued fractions for some multivariate polynomials generalizing the Genocchi and median Genocchi numbers, arXiv:2212.07232 [math.CO], 2022. See pp. 4, 12.
- Bishal Deb, Continued fractions using a Laguerre digraph interpretation of the Foata-Zeilberger bijection and its variants, arXiv:2304.14487 [math.CO], 2023. See pp. 4, 11.
- D. Dumont, Sur une conjecture de Gandhi concernant les nombres de Genocchi, Discrete Mathematics 1 (1972) 321-327.
- D. Dumont, Interpretations combinatoires des nombres de Genocchi, Duke Math. J., 41 (1974), 305-318.
- Dominique Dumont and Dominique Foata, Une propriété de symétrie des nombres de Genocchi Bull. Soc. Math. France 104 (1976), no. 4, 433-451. MR0434830 (55 #7794)
- D. Dumont and G. Viennot, A combinatorial interpretation of the Seidel generation of Genocchi numbers, Preprint, Annotated scanned copy.
- Dominique Dumont and Gérard Viennot, A combinatorial interpretation of the Seidel generation of Genocchi numbers, Combinatorial mathematics, optimal designs and their applications (Proc. Sympos. Combin. Math. and Optimal Design, Colorado State Univ., Fort Collins, Colo., 1978). Ann. Discrete Math. 6 (1980), 77-87. MR0593524 (82j:10024).
- A. L. Edmonds and S, Klee, The combinatorics of hyperbolized manifolds, arXiv:1210.7396 [math.CO], 2012.
- Richard Ehrenborg and Einar Steingrímsson, Yet another triangle for the Genocchi numbers, European J. Combin. 21 (2000), no. 5, 593-600. MR1771988 (2001h:05008)
- Sen-Peng Eu, Tung-Shan Fu, Hsin-Hao Lai, and Yuan-Hsun Lo, Gamma-positivity for a Refinement of Median Genocchi Numbers, arXiv:2103.09130 [math.CO], 2021.
- Vincent Froese and Malte Renken, Terrain-like Graphs and the Median Genocchi Numbers, arXiv:2210.16281 [math.CO], 2022.
- J. M. Gandhi, Research Problems: A Conjectured Representation of Genocchi Numbers, Amer. Math. Monthly 77 (1970), no. 5, 505-506. MR1535914
- Ira M. Gessel, On the Almkvist-Meurman Theorem for Bernoulli Polynomials, Integers (2023) Vol. 23, #A14.
- S. W. Golomb and E. C. Posner, Rook Domains, Latin Squares, Affine Planes, and Error-Distributing Codes, Transactions of the Information Theory Group of the IEEE, Vol. 10, No. 3 (1964), 196-208.
- Guo-Niu Han, Enumeration of Standard Puzzles
- Guo-Niu Han, Enumeration of Standard Puzzles [Cached copy]
- Guo-Niu Han and Jing-Yi Liu, Combinatorial proofs of some properties of tangent and Genocchi numbers, European Journal of Combinatorics, Vol. 71 (2018), pp. 99-110; arXiv preprint, arXiv:1707.08882 [math.CO], 2017-2018.
- Florent Hivert and Olivier Mallet, Combinatorics of k-shapes and Genocchi numbers, in FPSAC 2011, Reykjavik, Iceland DMTCS proc. AO, 2011, 493-504.
- Alexander Lazar and Michelle L. Wachs, The Homogenized Linial Arrangement and Genocchi Numbers, arXiv:1910.07651 [math.CO], 2019.
- Zhicong Lin and Sherry H.F. Yan, Cycles on a multiset with only even-odd drops, arXiv:2108.03790 [math.CO], 2021. See also Disc. Math. (2022) Vol. 345, No. 2, 112683.
- A. H. Morales and D. G. Zhu, On the Okounkov--Olshanski formula for standard tableaux of skew shape, arXiv:2007.05006 [math.CO], 2020.
- Qiongqiong Pan and Jiang Zeng, Cycles of even-odd drop permutations and continued fractions of Genocchi numbers, arXiv:2108.03200 [math.CO], 2021.
- John Riordan and Paul R. Stein, Proof of a conjecture on Genocchi numbers, Discrete Math. 5 (1973), 381-388. MR0316372 (47 #4919) - From _N. J. A. Sloane_, Jun 12 2012
- Alan Sokal, Table of n, a(n) for n = 1..10000 [315 MB file]
- H. M. Terrill and E. M. Terrill, Tables of numbers related to the tangent coefficients, J. Franklin Inst., 239 (1945), 66-67.
-
[Abs(2*(4^n-1)*Bernoulli(2*n)): n in [1..20]]; // Vincenzo Librandi, Jul 28 2017
-
A110501 := proc(n)
2*(-1)^n*(1-4^n)*bernoulli(2*n) ;
end proc:
seq(A110501(n),n=0..10) ; # R. J. Mathar, Aug 02 2013
-
a[n_] := 2*(4^n - 1) * BernoulliB[2n] // Abs; Table[a[n], {n, 19}] (* Jean-François Alcover, May 23 2013 *)
-
{a(n) = if( n<1, 0, 2 * (-1)^n * (1 - 4^n) * bernfrac( 2*n))};
-
{a(n) = if( n<1, 0, (2*n)! * polcoeff( x * tan(x/2 + x * O(x^(2*n))), 2*n))};
-
{a(n)=polcoeff(sum(m=0,n,m!^2*x^(m+1)/prod(k=1,m, 1+k^2*x+x*O(x^n))),n)} /* Paul D. Hanna, Jul 21 2011 */
-
upto(n) = my(v1, v2, v3); v1 = vector(n, i, 0); v1[1] = 1; v2 = vector(n-1, i, ((i+1)^2)\4); v3 = v1; for(i=2, n, for(j=2, i-1, v1[j] += v2[i-j+1]*v1[j-1]); v1[i] = v1[i-1]; v3[i] = v1[i]); v3 \\ Mikhail Kurkov, Aug 28 2025
-
from sympy import bernoulli
def A110501(n): return ((2<<(m:=n<<1))-2)*abs(bernoulli(m)) # Chai Wah Wu, Apr 14 2023
-
# Algorithm of L. Seidel (1877)
# n -> [a(1), ..., a(n)] for n >= 1.
def A110501_list(n) :
D = []; [D.append(0) for i in (0..n+2)]; D[1] = 1
R = [] ; b = True
for i in(0..2*n-1) :
h = i//2 + 1
if b :
for k in range(h-1,0,-1) : D[k] += D[k+1]
else :
for k in range(1,h+1,1) : D[k] += D[k-1]
b = not b
if b : R.append(D[h])
return R
A110501_list(19) # Peter Luschny, Apr 01 2012
-
[2*(-1)^n*(1-4^n)*bernoulli(2*n) for n in (1..20)] # G. C. Greubel, Nov 28 2018
A090238
Triangle T(n, k) read by rows. T(n, k) is the number of lists of k unlabeled permutations whose total length is n.
Original entry on oeis.org
1, 0, 1, 0, 2, 1, 0, 6, 4, 1, 0, 24, 16, 6, 1, 0, 120, 72, 30, 8, 1, 0, 720, 372, 152, 48, 10, 1, 0, 5040, 2208, 828, 272, 70, 12, 1, 0, 40320, 14976, 4968, 1576, 440, 96, 14, 1, 0, 362880, 115200, 33192, 9696, 2720, 664, 126, 16, 1, 0, 3628800, 996480, 247968, 64704, 17312, 4380, 952, 160, 18, 1
Offset: 0
Triangle begins:
1;
0, 1;
0, 2, 1;
0, 6, 4, 1;
0, 24, 16, 6, 1;
0, 120, 72, 30, 8, 1;
0, 720, 372, 152, 48, 10, 1;
0, 5040, 2208, 828, 272, 70, 12, 1;
0, 40320, 14976, 4968, 1576, 440, 96, 14, 1;
0, 366880, 115200, 33192, 9696, 2720, 664, 126, 16, 1;
0, 3628800, 996480, 247968, 64704, 17312, 4380, 952, 160, 18, 1;
...
- L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 171, #34.
-
T := proc(n,k) option remember; if n=0 and k=0 then return 1 fi;
if n>0 and k=0 or k>0 and n=0 then return 0 fi;
T(n-1,k-1)+(n+k-1)*T(n-1,k)/k end:
for n from 0 to 10 do seq(T(n,k),k=0..n) od; # Peter Luschny, Mar 03 2016
# Uses function PMatrix from A357368.
PMatrix(10, factorial); # Peter Luschny, Oct 09 2022
-
T[n_, k_] := T[n, k] = T[n-1, k-1] + ((n+k-1)/k)*T[n-1, k]; T[0, 0] = 1; T[, 0] = T[0, ] = 0;
Table[T[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jun 20 2018 *)
A136128
Number of components in all permutations of [1,2,...,n].
Original entry on oeis.org
1, 3, 10, 40, 192, 1092, 7248, 55296, 478080, 4625280, 49524480, 581368320, 7422589440, 102372076800, 1516402944000, 24004657152000, 404347023360000, 7220327288832000, 136227009945600000, 2707657158721536000, 56546150835879936000, 1237826569587277824000
Offset: 1
a(3) = 10 because the permutations of [1,2,3], with components separated by /, are 1/2/3, 1/32, 21/3, 231, 312 and 321.
- Louis Comtet, Advanced Combinatorics, Reidel, 1974, p. 262 (#14).
- Alois P. Heinz, Table of n, a(n) for n = 1..450
- Yujia Kang, Thomas Selig, Guanyi Yang, Yanting Zhang, and Haoyue Zhu, On friendship and cyclic parking functions, arXiv:2310.06560 [math.CO], 2023-2024. See p. 13.
- Jun Yan, Results on pattern avoidance in parking functions, arXiv:2404.07958 [math.CO], 2024. See p. 5.
-
seq(add(factorial(i)*factorial(n-i),i=0..n-1),n=1..20);
# second Maple program:
a:= proc(n) option remember; `if`(n<2, n,
(a(n-1)+(n-1)!)*(n+1)/2)
end:
seq(a(n), n=1..23); # Alois P. Heinz, Jun 13 2019
-
nn=20; p=Sum[n!x^n,{n,0,nn}]; Drop[CoefficientList[Series[p(p-1), {x,0,nn}], x], 1] (* Geoffrey Critzer, Apr 20 2012 *)
Table[(n + 1)! Re[-LerchPhi[2, 1, n + 1]], {n, 1, 20}] (* Peter Luschny, Jan 04 2018 *)
-
a(n) = 2*sum(k=0, (n+1)\2, (4^k-1)*abs(stirling(n+1, 2*k, 1))*bernfrac(2*k)); \\ Seiichi Manyama, Oct 05 2022
-
a(n) = my(A = 1, B = 1); for(k=1, n, B *= k; A = (n-k+1)*A + B); A-B \\ Mikhail Kurkov, Aug 09 2025
-
def aList(n) -> list[int]:
f, al, A = 1, 1, [1]
for i in range(2, n + 1):
f, al = f * i, (al + f) * (i + 1) >> 1
A.append(al)
return A
print(aList(22)) # Peter Luschny, Aug 09 2025
A059369
Triangle of numbers T(n,k) = T(n-1,k-1) + ((n+k-1)/k)*T(n-1,k), n >= 1, 1 <= k <= n, with T(n,1) = n!, T(n,n) = 1; read from right to left.
Original entry on oeis.org
1, 1, 2, 1, 4, 6, 1, 6, 16, 24, 1, 8, 30, 72, 120, 1, 10, 48, 152, 372, 720, 1, 12, 70, 272, 828, 2208, 5040, 1, 14, 96, 440, 1576, 4968, 14976, 40320, 1, 16, 126, 664, 2720, 9696, 33192, 115200, 362880, 1, 18, 160, 952, 4380, 17312, 64704, 247968, 996480
Offset: 1
When read from left to right the rows {T(n,k), 1 <= k <= n} for n=1,2,3,... are 1; 2,1; 6,4,1; 24,16,6,1; ...
- L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 171, #34.
-
nmax = 10; t[n_, k_] := Sum[(m+1)!*t[n-m-1, k-1], {m, 0, n-k}]; t[n_, 1] = n!; t[n_, n_] = 1; Flatten[ Table[ t[n, k], {n, 1, nmax}, {k, n, 1, -1}]] (* Jean-François Alcover, Nov 14 2011 *)
More terms from Larry Reeves (larryr(AT)acm.org), Jan 31 2001
A305577
a(n) = Sum_{k=0..n} k!!*(n - k)!!.
Original entry on oeis.org
1, 2, 5, 10, 26, 58, 167, 414, 1324, 3606, 12729, 37674, 145578, 463770, 1944879, 6614190, 29852856, 107616150, 518782545, 1970493210, 10077228270, 40125873690, 216425656215, 899557170750, 5091758227620, 22011865939350, 130202223160905, 583641857191050, 3594820517111250
Offset: 0
-
a:= proc(n) option remember; `if`(n<4, n^2+1,
((3*n^2-4*n-2)*a(n-2) +(n+1)*a(n-3)
-2*a(n-1) -(n-1)^2*n*a(n-4))/(2*n-4))
end:
seq(a(n), n=0..35); # Alois P. Heinz, Jun 14 2018
-
Table[Sum[k!! (n - k)!!, {k, 0, n}], {n, 0, 28}]
nmax = 28; CoefficientList[Series[Sum[k!! x^k, {k, 0, nmax}]^2, {x, 0, nmax}], x]
A357240
Expansion of e.g.f. 2 * (exp(x) - 1) / (exp(exp(x) - 1) + 1).
Original entry on oeis.org
0, 1, 0, -2, -5, -4, 32, 225, 794, 190, -22291, -200298, -920244, 924223, 65848880, 716920754, 3831260555, -13147083976, -575844827780, -7162425813919, -40755845041730, 320194436283162, 11810647258173653, 161108090793013130, 896865861205240824, -14305712791762925929, -487306962045115504436
Offset: 0
-
b:= proc(n, m) option remember; `if`(n=0, `if`(m=0, 0,
m*euler(m-1, 0)), m*b(n-1, m)+b(n-1, m+1))
end:
a:= n-> b(n, 0):
seq(a(n), n=0..26); # Alois P. Heinz, Jun 23 2023
-
nmax = 26; CoefficientList[Series[2 (Exp[x] - 1)/(Exp[Exp[x] - 1] + 1), {x, 0, nmax}], x] Range[0, nmax]!
Table[2 Sum[StirlingS2[n, k] (1 - 2^k) BernoulliB[k], {k, 0, n}], {n, 0, 26}]
-
a(n) = 2*sum(k=0, n, stirling(n, k, 2)*(1-2^k)*bernfrac(k)); \\ Michel Marcus, Sep 20 2022
Showing 1-7 of 7 results.
Comments