A059499 a(n) = |{m : multiplicative order of 2 mod m = n}|.
1, 1, 1, 2, 1, 3, 1, 4, 2, 5, 3, 16, 1, 5, 5, 8, 1, 24, 1, 38, 9, 11, 3, 68, 6, 5, 4, 54, 7, 79, 1, 16, 11, 5, 13, 462, 3, 5, 13, 140, 3, 123, 7, 110, 54, 11, 7, 664, 2, 114, 29, 118, 7, 124, 59, 188, 13, 55, 3, 4456, 1, 5, 82, 96, 5, 353, 3, 118, 11, 485, 7
Offset: 1
Keywords
Examples
a(3) = |{7}| = 1, a(4) = |{5,15}| = 2, a(6) = |{9,21,63}| = 3.
Links
- Max Alekseyev, Table of n, a(n) for n = 1..1206 (first 200 terms from Alois P. Heinz)
Crossrefs
Programs
-
Maple
with(numtheory): a:= n-> add(mobius(n/d)*tau(2^d-1), d=divisors(n)): seq(a(n), n=1..100); # Alois P. Heinz, May 31 2012
-
Mathematica
a[n_] := Sum[ MoebiusMu[n/d] * DivisorSigma[0, 2^d - 1], {d, Divisors[n]}]; Table[a[n], {n, 1, 71} ] (* Jean-François Alcover, Dec 12 2012 *)
-
PARI
a(n) = sumdiv(n, d, moebius(n/d) * numdiv(2^d-1)); \\ Amiram Eldar, Jan 25 2025
Formula
a(n) = Sum_{d|n} A008683(n/d) * A046801(d) = Sum_{d|A007947(n)} A008683(d) * A046801(n/d). - Max Alekseyev, May 03 2022
a(n) = 1 iff 2^n-1 is noncomposite. a(prime(n)) = 2^A088863(n)-1. - Thomas Ordowski, Jan 16 2014
Extensions
More terms from John W. Layman, Mar 22 2002
More terms from Alois P. Heinz, May 31 2012
Comments