cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A059321 Smallest number m such that m^2+1 is divisible by A002144(n)^2 (= squares of primes congruent to 1 mod 4).

Original entry on oeis.org

7, 70, 38, 41, 117, 378, 500, 682, 776, 3861, 4052, 515, 5744, 1710, 6613, 1744, 11018, 13241, 3458, 5099, 1393, 16610, 26884, 15006, 2072, 13637, 31361, 4443, 26508, 7850, 37520, 31152, 39922, 37107, 6072, 4005, 32491, 4030, 43211, 12238
Offset: 1

Views

Author

Marc LeBrun, Jan 26 2001

Keywords

Comments

a(2) = 70 since A002144(2)=13, 70^2+1 = 4091 = 13^2 * 29 and for no k<70 does 13^2 divide k^2+1. Related to period-1 continued fractions.

Crossrefs

Programs

  • Python
    from itertools import islice
    from sympy import nextprime, sqrt_mod_iter
    def A059321_gen(): # generator of terms
        p = 1
        while (p:=nextprime(p)):
            if p&3==1:
                yield min(sqrt_mod_iter(-1,p**2))
    A059321_list = list(islice(A059321_gen(),20)) # Chai Wah Wu, May 04 2024

A059592 Square-full part of n^2 + 1.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 5, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 5, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 5, 1, 1, 1, 1, 1, 17, 1, 1, 29, 1, 5, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 5, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 5, 1, 13, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 5, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 5, 1, 1, 1, 1, 1, 13, 1, 1, 1
Offset: 0

Views

Author

Marc LeBrun, Jan 25 2001

Keywords

Comments

Related to period-1 continued fractions [z,z,z,...].
A124808 gives number of numbers m <= n with a(m)=1. - Reinhard Zumkeller, Nov 08

Examples

			a(7)=5 since 7^2 + 1 = 50 = 25*2 = (5^2)*2.
		

Crossrefs

Programs

Formula

a(n) = A000188(A002522(n)).
a(n)^2 * A059591(n) = n^2 + 1.

A069987 Squarefree numbers of form k^2 + 1.

Original entry on oeis.org

2, 5, 10, 17, 26, 37, 65, 82, 101, 122, 145, 170, 197, 226, 257, 290, 362, 401, 442, 485, 530, 577, 626, 677, 730, 785, 842, 901, 962, 1090, 1157, 1226, 1297, 1370, 1522, 1601, 1765, 1937, 2026, 2117, 2210, 2305, 2402, 2501, 2602, 2705, 2810, 2917, 3026
Offset: 1

Views

Author

Sharon Sela (sharonsela(AT)hotmail.com), May 01 2002

Keywords

Comments

Heath-Brown (following Estermann) shows that, for any e > 0, there are k sqrt(x) + O(x^{7/24 + e}) members of this sequence up to x, for k = Product(1 - 2/p^2) = 0.8948412245... (A335963) where the product is over primes p = 1 mod 4. - Charles R Greathouse IV, Nov 19 2012, corrected by Amiram Eldar, Jul 08 2020
Integers k for which the period of the continued fraction of sqrt(k) is 1. - Michel Marcus, Apr 12 2019

Crossrefs

Programs

  • Maple
    select(numtheory:-issqrfree, [seq(n^2+1, n=1..100)]); # Robert Israel, Feb 09 2016
  • Mathematica
    Select[ Range[10^4], IntegerQ[ Sqrt[ # - 1]] && Union[ Transpose[ FactorInteger[ # ]] [[2]]] [[ -1]] == 1 &]
    Select[Range[60]^2+1,SquareFreeQ] (* Harvey P. Dale, Mar 21 2013 *)
  • PARI
    for(n=1,100,if(issquarefree(n^2+1),print1(n^2+1,",")))

Formula

a(n) = A049533(n)^2 + 1.

Extensions

Edited and extended by Robert G. Wilson v, Benoit Cloitre and Vladeta Jovovic, May 04 2002

A282092 Numbers m such that there exists at least one integer k < m such that m^2+1 and k^2+1 have the same prime factors.

Original entry on oeis.org

7, 18, 117, 239, 378, 843, 2207, 2943, 4443, 4662, 6072, 8307, 8708, 9872, 31561, 103682, 271443, 853932, 1021693, 3539232, 3699356, 6349657, 6907607, 7042807, 7249325, 9335094, 12623932, 12752043, 12813848, 22211431, 33385282, 42483057, 52374157, 105026693
Offset: 1

Views

Author

Michel Lagneau, Feb 06 2017

Keywords

Comments

For the pairs (m, k), is k always unique?
The pairs (m, k) are (7, 3), (18, 8), (117, 43), (239, 5), (378, 132), (843, 377), (2207, 987), (2943, 73), (4443, 53), (4662, 1568), (6072, 5118), (8307, 743), (8708, 2112), (9872, 2738), ...

Examples

			7 is in the sequence because of the pair (m, k) = (7, 3), 7^2+1 = 2*5^2 and 3^2+1 = 2*5 with the same prime factors 2 and 5.
		

Crossrefs

Subsequence of A049532 (numbers n such that n^2 + 1 is not squarefree).

Programs

  • Mathematica
    Select[Range@ 5000, Function[m, Total@ Boole@ Table[Function[w, And[SameQ[First@ w, #], SameQ[Last@ w, #]] &@ Union@ Flatten@ w]@ Map[FactorInteger[#][[All, 1]] &, {m^2 + 1, k^2 + 1}], {k, m - 1}] > 0]] (* Michael De Vlieger, Feb 07 2017 *)
  • PARI
    isok(n)=ok = 0; vn = factor(n^2+1)[,1]; for (k=1, n-1, if (factor(k^2+1)[,1] == vn, ok = 1; break);); ok; \\ Michel Marcus, Feb 09 2017
    
  • PARI
    squeeze(f)=factorback(f)\2
    list(lim)=my(v=List(),m=Map(),t); for(n=1,lim, t=squeeze(factor(n^2+1)[,1]); if(mapisdefined(m,t), listput(v,n), mapput(m,t,0))); Vec(v) \\ Charles R Greathouse IV, Feb 12 2017
  • Perl
    use ntheory qw(:all);
    for (my ($m, %t) = 1 ; ; ++$m) {
    my $k = vecprod(map{$_->[0]}factor_exp($m**2+1));
    push @{$t{$k}}, $m;
    if (@{$t{$k}} >= 2) {
    print'('.join(', ',reverse(@{$t{$k}})).")\n";
    }
    } # Daniel Suteu, Feb 08 2017
    

Extensions

a(15)-a(29) from Daniel Suteu, Feb 08 2017
a(30) from Daniel Suteu, Feb 10 2017
a(31)-a(34) from Joerg Arndt, Feb 11 2017
Showing 1-4 of 4 results.