cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A209257 A musically inspired Titius-Bode-like sequence based on the geometric division of 4- and 5-dimensional space: Z_(n+1) = 3 * (C(n-1, 0) + C(n-1, 1) + C(n-1, 2) + C(n-1, 3) + C(n-1, 4) + C(n-1, 5)*A059620(n+6)) + 4.

Original entry on oeis.org

4, 7, 10, 16, 28, 52, 97, 193, 301, 493, 1150, 1162, 3076, 2386, 3283, 10423, 5827, 20659, 9646, 37852, 15112, 18592, 83692, 27331, 133660, 38857, 45832, 251050, 62566, 367318, 83527, 523315, 109375, 124351, 852826, 158872, 1152508, 200140, 223561, 1754809
Offset: 0

Views

Author

Raphie Frank, Jan 14 2013

Keywords

Comments

The classical Titius-Bode version of this sequence is given in A003461.
C(n, 0) + C(n, 1) + C(n, 2) + C(n, 3) + C(n, 4) = A000127(n) = A059173(n+1)/2.
C(n, 0) + C(n, 1) + C(n, 2) + C(n, 3) + C(n, 4) + C(n, 5) = A006261(n) = A059174(n+1)/2.
Where planetary and dwarf-planetary distances from the Sun at semi-major axis are expressed in astronomical units/10, then compare the following (noting that the running correlation coefficient, r, trends upwards as the population size increases):
n = 0, Mercury @ semi-major = 3.8710 vs. 4.0 --> 96.78%.
n = 1, Venus @ semi-major = 7.2333 vs. 7.0 --> 103.33%.
n = 2, Earth @ semi-major = 10.0000 vs. 10.0 --> 100.00%, r = 0.998430.
n = 3, Mars @ semi-major = 15.2368 vs. 16.0 --> 95.23%, r = 0.998356.
n = 4, Ceres @ semi-major = 27.654 vs. 28.0 --> 98.76%, r = 0.999412.
n = 5, Jupiter @ semi-major = 52.0427 vs. 52.0 --> 100.08%, r = 0.999809.
n = 6, Saturn @ semi-major = 95.8202 vs. 97.0 --> 98.78%, r = 0.999937.
n = 7, Uranus @ semi-major = 192.2941 vs. 193.0 --> 99.63%, r = 0.999981.
n = 8, Neptune @ semi-major = 301.0366 vs. 301.0 --> 100.01%, r = 0.999990.
The correspondence between this sequence and planetary distances breaks down subsequent to Neptune unless one adopts the conceit of considering the outer four dwarf planets -- Pluto, Haumea, MakeMake and Eris -- as one unit occupying one "planetary band" (note that Eris @ perihelion is inside the Kuiper Belt). Then:
n = 9, Pluto/Haumea/MakeMake/Eris @ semi-major ~ 490.492 average vs. 493.0 --> 99.49%, r = 0.999994.
Empirical source: Wikipedia planet pages as of Jan 14 2013.
This sequence originated as part of an attempt to compare and contrast the "good" numerology of Johann Balmer to the "bad" numerology of Titius-Bode. Coincidentally, (Totient(C(31, 0) + C(31, 1) + C(31, 2) + C(31, 3) + C(31, 4)))/10^11 equals 3.6456*10^-7, in meters, the Balmer constant as given by Johann Balmer in 1885.

Examples

			Z_1 = 3*((1 - 1 +  1 -  1 +  1) + (-1 * 1)) + 4 =   4,
Z_2 = 3*((1 + 0 +  0 +  0 +  0) +  (0 * 0)) + 4 =   7,
Z_3 = 3*((1 + 1 +  0 +  0 +  0) +  (0 * 0)) + 4 =  10,
Z_4 = 3*((1 + 2 +  1 +  0 +  0) +  (0 * 1)) + 4 =  16,
Z_5 = 3*((1 + 3 +  3 +  1 +  0) +  (0 * 0)) + 4 =  28,
Z_6 = 3*((1 + 4 +  6 +  4 +  1) +  (0 * 1)) + 4 =  52,
Z_7 = 3*((1 + 5 + 10 + 10 +  5) +  (1 * 0)) + 4 =  97,
Z_8 = 3*((1 + 6 + 15 + 20 + 15) +  (6 * 1)) + 4 = 193,
Z_9 = 3*((1 + 7 + 21 + 35 + 35) + (21 * 0)) + 4 = 301.
		

Crossrefs

Programs

  • Magma
    [3*(Binomial(n-1,0) + Binomial(n-1,1) + Binomial(n-1,2) + Binomial(n-1,3) + Binomial(n-1,4) + Binomial(n-1,5)*(Floor((5*(n+6) + 7)/12) - Floor((5*(n+6)+2)/12))) + 4: n in [0..30]]; // G. C. Greubel, Jan 07 2018
  • Mathematica
    Z[n_]:= 3*(Binomial[n - 1, 0] + Binomial[n - 1, 1] + Binomial[n - 1, 2] + Binomial[n - 1, 3] + Binomial[n - 1, 4] + Binomial[n - 1, 5]*(Floor[(5 (n + 6) + 7)/12] - Floor[(5 (n + 6) + 2)/12])) + 4; Table[Z[n], {n, 0, 50}] (* G. C. Greubel, Jan 07 2018 *)
  • PARI
    {z(n) = 3*(binomial(n-1,0) + binomial(n-1,1) + binomial(n-1,2) + binomial(n-1,3) + binomial(n-1,4) + binomial(n-1,5)*(floor((5*(n+6) + 7)/12) - floor((5*(n+6)+2)/12))) + 4};
    for(n=0,30, print1(z(n), ", ")) \\ G. C. Greubel, Jan 07 2018
    

Formula

Z_(n+1) = 3 * (C(n-1, 0) + C(n-1, 1) + C(n-1, 2) + C(n-1, 3) + C(n-1, 4) + C(n-1, 5)*(floor((5*(n+6)+7)/12) - floor((5*(n+6)+2)/12))) + 4.

Extensions

a(18) corrected by G. C. Greubel, Jan 07 2018

A060107 Numbers that are congruent to {0, 2, 3, 5, 7, 8, 10} mod 12. The ivory keys on a piano, start with A0 = the 0th key.

Original entry on oeis.org

0, 2, 3, 5, 7, 8, 10, 12, 14, 15, 17, 19, 20, 22, 24, 26, 27, 29, 31, 32, 34, 36, 38, 39, 41, 43, 44, 46, 48, 50, 51, 53, 55, 56, 58, 60, 62, 63, 65, 67, 68, 70, 72, 74, 75, 77, 79, 80, 82, 84, 86, 87, 89, 91, 92, 94, 96, 98, 99, 101, 103, 104, 106, 108, 110, 111, 113, 115
Offset: 1

Views

Author

Henry Bottomley, Feb 27 2001

Keywords

Comments

More precisely, the key-numbers of the pitches of a minor scale on a standard chromatic keyboard, with root = 0 and flat seventh.
Also key-numbers of the pitches of an Aeolian mode scale on a standard chromatic keyboard, with root = 0. An Aeolian mode scale can, for example, be played on consecutive white keys of a standard keyboard, starting on the root tone A.
A piano sequence since if a(n) < 88 then A059620(a(n)) = 0.

Crossrefs

Cf. A059620, A081031. Complement of A060106.
A guide for some sequences related to modes and chords:
Modes:
Lydian mode (F): A083089
Ionian mode (C): A083026
Mixolydian mode (G): A083120
Dorian mode (D): A083033
Aeolian mode (A): this sequence (raised seventh: A083028)
Phrygian mode (E): A083034
Locrian mode (B): A082977
Chords:
Major chord: A083030
Minor chord: A083031
Dominant seventh chord: A083032

Programs

  • Magma
    [n : n in [0..150] | n mod 12 in [0, 2, 3, 5, 7, 8, 10]]; // Wesley Ivan Hurt, Jul 20 2016
    
  • Maple
    A060107:=n->12*floor(n/7)+[0, 2, 3, 5, 7, 8, 10][(n mod 7)+1]: seq(A060107(n), n=0..100); # Wesley Ivan Hurt, Jul 20 2016
  • Mathematica
    Select[Range[0,120], MemberQ[{0,2,3,5,7,8,10}, Mod[#,12]]&] (* or *) LinearRecurrence[{1,0,0,0,0,0,1,-1}, {0,2,3,5,7,8,10,12}, 70] (* Harvey P. Dale, Nov 10 2011 *)
  • PARI
    x='x+O('x^99); concat(0, Vec(x^2*(2+x+2*x^2+2*x^3+x^4+2*x^5+2*x^6)/((x^6+x^5+x^4+x^3+x^2+x+1)*(x-1)^2))) \\ Jianing Song, Sep 22 2018

Formula

a(n) = a(n-7) + 12 for n > 7.
a(n) = a(n-1) + a(n-7) - a(n-8) for n > 8.
G.f.: x^2*(2 + x + 2*x^2 + 2*x^3 + x^4 + 2*x^5 + 2*x^6)/((x^6 + x^5 + x^4 + x^3 + x^2 + x + 1)*(x - 1)^2). - R. J. Mathar, Oct 08 2011
From Wesley Ivan Hurt, Jul 20 2016: (Start)
a(n) = (84*n - 91 - 2*(n mod 7) + 5*((n + 1) mod 7) - 2*((n + 2) mod 7) - 2*((n + 3) mod 7) + 5*((n + 4) mod 7) - 2*((n + 5) mod 7) - 2*((n + 6) mod 7))/49.
a(7k) = 12k - 2, a(7k-1) = 12k - 4, a(7k-2) = 12k - 5, a(7k-3) = 12k - 7, a(7k-4) = 12k - 9, a(7k-5) = 12k - 10, a(7k-6) = 12k - 12. (End)
a(n) = A081031(n) - 1 for 1 <= n <= 36. - Jianing Song, Oct 14 2019

A060106 Numbers that are congruent to {1, 4, 6, 9, 11} mod 12. The ebony keys on a piano, starting with A0 = the 0th key.

Original entry on oeis.org

1, 4, 6, 9, 11, 13, 16, 18, 21, 23, 25, 28, 30, 33, 35, 37, 40, 42, 45, 47, 49, 52, 54, 57, 59, 61, 64, 66, 69, 71, 73, 76, 78, 81, 83, 85, 88, 90, 93, 95, 97, 100, 102, 105, 107, 109, 112, 114, 117, 119, 121, 124, 126, 129, 131, 133, 136, 138, 141, 143, 145, 148
Offset: 1

Views

Author

Henry Bottomley, Feb 27 2001

Keywords

Comments

A piano sequence since if a(n) < 88 then A059620(a(n)) = 1.

Crossrefs

Cf. A059620, A081032. Complement of A060107.

Programs

  • PARI
    Vec(x*(1 + 3*x + 2*x^2 + 3*x^3 + 2*x^4 + x^5) / ((1 - x)^2*(1 + x + x^2 + x^3 + x^4)) + O(x^60)) \\ Colin Barker, Oct 14 2019

Formula

a(n) = a(n-5) + 12.
a(n) = A081032(n) - 1 for 1 <= n <= 36. - Jianing Song, Oct 14 2019
From Colin Barker, Oct 14 2019: (Start)
G.f.: x*(1 + 3*x + 2*x^2 + 3*x^3 + 2*x^4 + x^5) / ((1 - x)^2*(1 + x + x^2 + x^3 + x^4)).
a(n) = a(n-1) + a(n-5) - a(n-6) for n > 6.
(End)

A214832 Integer part of A440 piano key frequencies, start with A0 = the 1st key.

Original entry on oeis.org

27, 29, 30, 32, 34, 36, 38, 41, 43, 46, 48, 51, 55, 58, 61, 65, 69, 73, 77, 82, 87, 92, 97, 103, 110, 116, 123, 130, 138, 146, 155, 164, 174, 184, 195, 207, 220, 233, 246, 261, 277, 293, 311, 329, 349, 369, 391, 415, 440, 466, 493, 523, 554, 587, 622, 659, 698, 739, 783, 830, 880, 932, 987, 1046, 1108, 1174, 1244, 1318, 1396, 1479, 1567, 1661, 1760, 1864, 1975, 2093, 2217, 2349, 2489, 2637, 2793, 2959, 3135, 3322, 3520, 3729, 3951, 4186
Offset: 1

Views

Author

Jon Perry, Mar 07 2013

Keywords

Comments

A254531(a(k)) = k, k = 1..88. - Reinhard Zumkeller, Feb 04 2015

Examples

			Middle C is 261.626 Hz so a(40) = 261.
		

Crossrefs

Programs

  • Haskell
    a214832 = floor . (* 440) . (2 **) . (/ 12) . fromIntegral . subtract 49
    -- Reinhard Zumkeller, Nov 23 2014
  • JavaScript
    for (i=1;i<=88;i++) document.write(Math.floor(Math.pow(2,(i-49)/12)*440)+", ");
    
  • PARI
    a(n)=floor(440*2^((n-49)/12));
    

Formula

a(n) = floor[2^((n-49)/12)*440] (Hz) for 1 <= n <= 88.

A081031 Positions of white keys on piano keyboard, starting with A0 = the 1st key.

Original entry on oeis.org

1, 3, 4, 6, 8, 9, 11, 13, 15, 16, 18, 20, 21, 23, 25, 27, 28, 30, 32, 33, 35, 37, 39, 40, 42, 44, 45, 47, 49, 51, 52, 54, 56, 57, 59, 61, 63, 64, 66, 68, 69, 71, 73, 75, 76, 78, 80, 81, 83, 85, 87, 88
Offset: 1

Views

Author

David W. Wilson, Mar 02 2003

Keywords

Examples

			First, 3rd, 4th, 6th, etc. keys of piano keyboard are white.
		

Crossrefs

Programs

  • Mathematica
    Join[{1,3},Flatten[Table[12n+{4,6,8,9,11,13,15},{n,0,6}]],{88}] (* Harvey P. Dale, Mar 15 2013 *)
    LinearRecurrence[{1,0,0,0,0,0,1,-1},{1,3,4,6,8,9,11,13},52] (* Harvey P. Dale, May 14 2023 *)

Formula

a(n) = floor((12n-3)/7).
From Chai Wah Wu, Sep 11 2018: (Start)
a(n) = a(n-1) + a(n-7) - a(n-8) for n > 8.
G.f. for a keyboard with infinite number of keys: x*(x^7 + 2*x^6 + x^5 + 2*x^4 + 2*x^3 + x^2 + 2*x + 1)/(x^8 - x^7 - x + 1). (End)
a(n) = A060107(n) + 1 for 1 <= n <= 36. - Jianing Song, Oct 14 2019

A081032 Positions of black keys on piano keyboard, starting with A0 = the 1st key.

Original entry on oeis.org

2, 5, 7, 10, 12, 14, 17, 19, 22, 24, 26, 29, 31, 34, 36, 38, 41, 43, 46, 48, 50, 53, 55, 58, 60, 62, 65, 67, 70, 72, 74, 77, 79, 82, 84, 86
Offset: 1

Views

Author

David W. Wilson, Mar 02 2003

Keywords

Examples

			2nd, 5th, 7th, 10th, etc. keys of piano keyboard are black.
		

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{1,0,0,0,1,-1},{2,5,7,10,12,14},36] (* Harvey P. Dale, Sep 15 2018 *)

Formula

a(n) = floor((12n+2)/5).
From Chai Wah Wu, Sep 11 2018: (Start)
a(n) = a(n-1) + a(n-5) - a(n-6) for n > 6.
G.f. for a keyboard with an infinite number of keys: x*(2*x^4 + 3*x^3 + 2*x^2 + 3*x + 2)/(x^6 - x^5 - x + 1). (End)
a(n) = A060106(n) + 1 for 1 <= n <= 36. - Jianing Song, Oct 14 2019

A356464 Number of black keys in each group of black keys on a standard 88-key piano (left to right).

Original entry on oeis.org

1, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3
Offset: 1

Views

Author

Peter Woodward, Aug 08 2022

Keywords

Comments

On a standard piano keyboard, the black keys appear in groups of two and three, with each group separated from adjacent groups by the presence of two white keys that have no black key between them.
The black keys in a group of two are C#/Db and D#/Eb; the black keys in a group of three are F#/Gb, G#/Ab, and A#/Bb.
The A#/Bb key near the left end of the keyboard is a special case; it is the only black key in its group because the white A key to its left is the leftmost key on the keyboard.

Examples

			From _Jon E. Schoenfield_, Aug 12 2022: (Start)
In the diagram below, five octaves (i.e., sets of 12 consecutive keys) have been omitted (as represented by the ellipses):
.
    n |  1       2         3       ...     14        15
  ----+---------------------------------------------------------
  a(n)|  1       2         3       ...      2         3
    ______________________________ ... _________________________
      | |/| | |/||/| | |/||/||/| |     | |/||/| | |/||/||/| |  |
      | |/| | |/||/| | |/||/||/| |     | |/||/| | |/||/||/| |  |
      | |/| | |/||/| | |/||/||/| |     | |/||/| | |/||/||/| |  |
      | |_| | |_||_| | |_||_||_| |     | |_||_| | |_||_||_| |  |
      |  |  |  |  |  |  |  |  |  |     |  |  |  |  |  |  |  |  |
      |  |  |  |  |  |  |  |  |  |     |  |  |  |  |  |  |  |  |
      |__|__|__|__|__|__|__|__|__|     |__|__|__|__|__|__|__|__|
       A  B  C  D  E  F  G  A  B   ...  C  D  E  F  G  A  B  C
(End)
		

Crossrefs

Showing 1-7 of 7 results.