cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A059672 Sum of binary numbers with n 1's and one (possibly leading) 0.

Original entry on oeis.org

0, 3, 14, 45, 124, 315, 762, 1785, 4088, 9207, 20470, 45045, 98292, 212979, 458738, 983025, 2097136, 4456431, 9437166, 19922925, 41943020, 88080363, 184549354, 385875945, 805306344, 1677721575, 3489660902, 7247757285, 15032385508
Offset: 0

Views

Author

Henry Bottomley, Feb 05 2001

Keywords

Comments

a(n-1) is also the number of multiplications required to compute the permanent of general n X n matrices using Ryser's formula (see Kiah et al.). - Stefano Spezia, Oct 25 2021

Examples

			a(4) = 124 since the binary sum 11110 + 11101 + 11011 + 10111 + 01111 is 30 + 29 + 27 + 23 + 15.
		

References

  • Herbert John Ryser, Combinatorial Mathematics, volume 14 of Carus Mathematical Monographs. American Mathematical Soc., (1963), pp. 24-28.

Crossrefs

Cf. A058922.

Programs

Formula

a(n) = n*(2^(n+1)-1) = A058922(n+1) - n.
G.f.: x*(3-4*x)/((1-x)^2*(1-2*x)^2). - Colin Barker, Mar 21 2012
a(n) = Sum_{k=0..n} Sum_{i=0..n} C(n+1,i) - C(k,i). - Wesley Ivan Hurt, Sep 21 2017
E.g.f.: x*exp(x)*(4*exp(x) - 1). - Stefano Spezia, Oct 25 2021
a(n) = 6*a(n-1) - 13*a(n-2) + 12*a(n-3) - 4*a(n-4). - Wesley Ivan Hurt, May 04 2024