A059672 Sum of binary numbers with n 1's and one (possibly leading) 0.
0, 3, 14, 45, 124, 315, 762, 1785, 4088, 9207, 20470, 45045, 98292, 212979, 458738, 983025, 2097136, 4456431, 9437166, 19922925, 41943020, 88080363, 184549354, 385875945, 805306344, 1677721575, 3489660902, 7247757285, 15032385508
Offset: 0
Examples
a(4) = 124 since the binary sum 11110 + 11101 + 11011 + 10111 + 01111 is 30 + 29 + 27 + 23 + 15.
References
- Herbert John Ryser, Combinatorial Mathematics, volume 14 of Carus Mathematical Monographs. American Mathematical Soc., (1963), pp. 24-28.
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Han Mao Kiah, Alexander Vardy and Hanwen Yao, Computing Permanents on a Trellis, arXiv:2107.07377 [cs.IT], 2021. See Table 1 p. 3.
- Index entries for linear recurrences with constant coefficients, signature (6,-13,12,-4).
Crossrefs
Cf. A058922.
Programs
-
Magma
[n*(2^(n+1)-1): n in [0..35]]; // Vincenzo Librandi, Jul 23 2011
-
Mathematica
A059672[n_Integer] := n*(2^(n + 1) - 1); Table[A059672[n], {n,0,40}] (* Vladimir Joseph Stephan Orlovsky, Jul 22 2011 *) LinearRecurrence[{6,-13,12,-4},{0,3,14,45},40] (* Harvey P. Dale, Aug 30 2016 *)
-
PARI
a(n) =2*n<
Charles R Greathouse IV, Mar 21 2012 -
PARI
x='x+O('x^99); concat(0, Vec(x*(3-4*x)/((1-x)^2*(1-2*x)^2))) \\ Altug Alkan, Apr 09 2016
Formula
a(n) = n*(2^(n+1)-1) = A058922(n+1) - n.
G.f.: x*(3-4*x)/((1-x)^2*(1-2*x)^2). - Colin Barker, Mar 21 2012
a(n) = Sum_{k=0..n} Sum_{i=0..n} C(n+1,i) - C(k,i). - Wesley Ivan Hurt, Sep 21 2017
E.g.f.: x*exp(x)*(4*exp(x) - 1). - Stefano Spezia, Oct 25 2021
a(n) = 6*a(n-1) - 13*a(n-2) + 12*a(n-3) - 4*a(n-4). - Wesley Ivan Hurt, May 04 2024
Comments