A059714 Number of stacked directed animals on the triangular lattice.
1, 3, 11, 44, 184, 789, 3435, 15100, 66806, 296870, 1323318, 5911972, 26455294, 118528793, 531540891, 2385375732, 10710619014, 48112492938, 216195753066, 971744791032, 4368674392104, 19643610378738, 88339070102046, 397313118498744, 1787115246076764
Offset: 1
Keywords
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..200
- M. Bousquet-Mélou and A. Rechnitzer, Lattice animals and heaps of dimers
- M. Bousquet-Mélou and A. Rechnitzer, Lattice animals and heaps of dimers, Discrete Math. 258 (2002), no. 1-3, 235-274.
- M. Bousquet-Mélou and S. Butler, Forest-like permutations, arXiv:math/0603617 [math.CO], 2006.
- Kyu-Hwan Lee, Se-jin Oh, Catalan triangle numbers and binomial coefficients, arXiv:1601.06685 [math.CO], 2016.
Crossrefs
Cf. A005773.
Programs
-
Maple
gf := ((1-3*x)*(1-4*x)-(1-5*x)*sqrt(1-4*x))/(2*x*(2-9*x)): s := series(gf, x, 50): for i from 1 to 100 do printf(`%d,`,coeff(s,x,i)) od:
-
Mathematica
Rest[Table[SeriesCoefficient[((1-3*x)*(1-4*x)-(1-5*x)*Sqrt[1-4*x])/(2*x*(2-9*x)),{x,0,n}],{n,0,20}]] (* Vaclav Kotesovec, Oct 28 2012 *) Flatten[{1,Table[3^(2*n-2)/2^n* (2 - Sum[(k+8)*Binomial[2*k,k]*2^k/((k+1)*(k+2)*3^(2*k)),{k,1,n-1}]),{n,2,20}]}] (* Vaclav Kotesovec, Oct 28 2012 *)
-
Maxima
a(n):=sum((k+1)*2^(k-1)*binomial(2*n,n-k-1),k,1,n-1)/n+binomial(2*n,n-1)/n; /* Vladimir Kruchinin, Jun 08 2016 */
-
PARI
x = 'x + O('x^40); Vec(((1-3*x)*(1-4*x)-(1-5*x)*sqrt(1-4*x))/(2*x*(2-9*x))) \\ Michel Marcus, Jan 28 2016
Formula
G.f.: ((1-3*x)*(1-4*x)-(1-5*x)*sqrt(1-4*x))/(2*x*(2-9*x)).
2*(n+1)*a(n) +(5-27*n)*a(n-1) +(121*n-163)*a(n-2) +90*(5-2*n)*a(n-3) =0. - R. J. Mathar, Aug 14 2012 [See following Israel's contribution.]
a(n) ~ 3^(2*n-1)/2^(n+2). - Vaclav Kotesovec, Oct 11 2012
a(n) = 3^(2*n-2)/2^n*(2-Sum_{k=1..n-1} (k+8)*C(2*k,k)*2^k/((k+1)*(k+2)*3^(2*k)) ), for n>1. - Vaclav Kotesovec, Oct 28 2012
a(n) = Sum_{k=1..n-1} (k+1)*2^(k-1)*binomial(2*n,n-k-1)/n + binomial(2*n,n-1)/n. - Vladimir Kruchinin, Jun 08 2016
G.f. satisfies 60*x^3-31*x^2+4*x+(90*x^3-79*x^2+22*x-2)*g(x)+(180*x^4-121*x^3+27*x^2-2*x)*g'(x) = 0, from which Mathar's recurrence follows. - Robert Israel, Jun 08 2016
G.f. F satisfies 0 = F^2*(9*x^2 - 2*x) + F*(12*x^2 - 7*x + 1) + 4*x^2 - x. - F. Chapoton, Oct 16 2021
Extensions
More terms from James Sellers, Feb 09 2001
Comments