cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A059714 Number of stacked directed animals on the triangular lattice.

Original entry on oeis.org

1, 3, 11, 44, 184, 789, 3435, 15100, 66806, 296870, 1323318, 5911972, 26455294, 118528793, 531540891, 2385375732, 10710619014, 48112492938, 216195753066, 971744791032, 4368674392104, 19643610378738, 88339070102046, 397313118498744, 1787115246076764
Offset: 1

Views

Author

Keywords

Comments

Closely related to directed animals. A square lattice version exists.

Crossrefs

Cf. A005773.

Programs

  • Maple
    gf := ((1-3*x)*(1-4*x)-(1-5*x)*sqrt(1-4*x))/(2*x*(2-9*x)): s := series(gf, x, 50): for i from 1 to 100 do printf(`%d,`,coeff(s,x,i)) od:
  • Mathematica
    Rest[Table[SeriesCoefficient[((1-3*x)*(1-4*x)-(1-5*x)*Sqrt[1-4*x])/(2*x*(2-9*x)),{x,0,n}],{n,0,20}]] (* Vaclav Kotesovec, Oct 28 2012 *)
    Flatten[{1,Table[3^(2*n-2)/2^n* (2 - Sum[(k+8)*Binomial[2*k,k]*2^k/((k+1)*(k+2)*3^(2*k)),{k,1,n-1}]),{n,2,20}]}] (* Vaclav Kotesovec, Oct 28 2012 *)
  • Maxima
    a(n):=sum((k+1)*2^(k-1)*binomial(2*n,n-k-1),k,1,n-1)/n+binomial(2*n,n-1)/n; /* Vladimir Kruchinin, Jun 08 2016 */
  • PARI
    x = 'x + O('x^40); Vec(((1-3*x)*(1-4*x)-(1-5*x)*sqrt(1-4*x))/(2*x*(2-9*x))) \\ Michel Marcus, Jan 28 2016
    

Formula

G.f.: ((1-3*x)*(1-4*x)-(1-5*x)*sqrt(1-4*x))/(2*x*(2-9*x)).
2*(n+1)*a(n) +(5-27*n)*a(n-1) +(121*n-163)*a(n-2) +90*(5-2*n)*a(n-3) =0. - R. J. Mathar, Aug 14 2012 [See following Israel's contribution.]
a(n) ~ 3^(2*n-1)/2^(n+2). - Vaclav Kotesovec, Oct 11 2012
a(n) = 3^(2*n-2)/2^n*(2-Sum_{k=1..n-1} (k+8)*C(2*k,k)*2^k/((k+1)*(k+2)*3^(2*k)) ), for n>1. - Vaclav Kotesovec, Oct 28 2012
a(n) = Sum_{k=1..n-1} (k+1)*2^(k-1)*binomial(2*n,n-k-1)/n + binomial(2*n,n-1)/n. - Vladimir Kruchinin, Jun 08 2016
G.f. satisfies 60*x^3-31*x^2+4*x+(90*x^3-79*x^2+22*x-2)*g(x)+(180*x^4-121*x^3+27*x^2-2*x)*g'(x) = 0, from which Mathar's recurrence follows. - Robert Israel, Jun 08 2016
G.f. F satisfies 0 = F^2*(9*x^2 - 2*x) + F*(12*x^2 - 7*x + 1) + 4*x^2 - x. - F. Chapoton, Oct 16 2021

Extensions

More terms from James Sellers, Feb 09 2001