cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A001207 Number of fixed hexagonal polyominoes with n cells.

Original entry on oeis.org

1, 3, 11, 44, 186, 814, 3652, 16689, 77359, 362671, 1716033, 8182213, 39267086, 189492795, 918837374, 4474080844, 21866153748, 107217298977, 527266673134, 2599804551168, 12849503756579, 63646233127758, 315876691291677, 1570540515980274, 7821755377244303, 39014584984477092, 194880246951838595, 974725768600891269, 4881251640514912341, 24472502362094874818, 122826412768568196148, 617080993446201431307, 3103152024451536273288, 15618892303340118758816, 78679501136505611375745
Offset: 1

Views

Author

Keywords

References

  • A. J. Guttmann, ed., Polygons, Polyominoes and Polycubes, Springer, 2009, p. 477. (Table 16.9 has 46 terms of this sequence.)
  • W. F. Lunnon, Counting hexagonal and triangular polyominoes, pp. 87-100 of R. C. Read, editor, Graph Theory and Computing. Academic Press, NY, 1972.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A000228 (free), A006535 (one-sided).
Cf. A121220 (simply connected), A059716 (column convex).

Extensions

3 more terms and reference from Achim Flammenkamp, Feb 15 1999
More terms from Markus Voege (markus.voege(AT)inria.fr), Mar 25 2004

A167012 Number of Level 2 hexagonal polyominoes with cheesy blocks and n cells.

Original entry on oeis.org

1, 3, 11, 44, 186, 810, 3582, 15952, 71242, 318441, 1423411, 6360809, 28415254, 126900911, 566604462, 2529439891, 11290673434, 50394458326, 224918228462, 1003813933351, 4479953995624, 19993503244811, 89228022987483, 398209768217607
Offset: 1

Views

Author

Jonathan Vos Post, Oct 26 2009

Keywords

Comments

From Table 1, p.24, of Feretic. By level 0 cheesy polyominoes, and so too by level 0 polyominoes with cheesy blocks, Feretic appears to mean the usual column-convex polyominoes (A059716). See the paper for his definition.

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{16,-107,391,-850,1108,-797,169,266,-317,-159,913,-1081,672,-446,268,-7,158,-404,222,-42,70,-34},{1,3,11,44,186,810,3582,15952,71242,318441,1423411,6360809,28415254,126900911,566604462,2529439891,11290673434,50394458326,224918228462,1003813933351,4479953995624,19993503244811},24] (* Ray Chandler, Jul 16 2015 *)

Formula

G.f.: (x*(1 - 13*x + 70*x^2 - 202*x^3 + 336*x^4 - 317*x^5 + 143*x^6 + 18*x^7 - 84*x^8 + 11*x^9 + 227*x^10 - 375*x^11 + 267*x^12 - 165*x^13 + 134*x^14 - 21*x^15 + 4*x^16 - 124*x^17 + 98*x^18 - 12*x^19 + 28*x^20 - 16*x^21)) / (1 - 16*x + 107*x^2 - 391*x^3 + 850*x^4 - 1108*x^5 + 797*x^6 - 169*x^7 - 266*x^8 + 317*x^9 + 159*x^10 - 913*x^11 + 1081*x^12 - 672*x^13 + 446*x^14 - 268*x^15 + 7*x^16 - 158*x^17 + 404*x^18 - 222*x^19 + 42*x^20 - 70*x^21 + 34*x^22).

Extensions

Edited by Ralf Stephan, Feb 07 2014
Extended by Ray Chandler, Jul 16 2015

A167013 Number of Level 3 hexagonal polyominoes with cheesy blocks and n cells.

Original entry on oeis.org

1, 3, 11, 44, 186, 812, 3614, 16259, 73558, 333683, 1515454, 6885303, 31283654, 142121322, 645545957, 2931714681, 13312277095, 60440946141, 274391188445, 1245601594285, 5654137180147, 25664803641528, 116492672036579, 528751598530367
Offset: 1

Views

Author

Jonathan Vos Post, Oct 26 2009

Keywords

Comments

From Table 1, p.24, of Feretic. By level 0 cheesy polyominoes, and so too by level 0 polyominoes with cheesy blocks, Feretic appears to mean the usual column-convex polyominoes (A059716). See the paper for his definition.

Crossrefs

Formula

G.f.: (x*(1 - 24*x + 264*x^2 - 1766*x^3 + 8033*x^4 - 26297*x^5 + 63860*x^6 - 116445*x^7 + 157849*x^8 - 148533*x^9 + 61825*x^10 + 99443*x^11 - 308464*x^12 + 519182*x^13 - 655900*x^14 + 618461*x^15 - 344081*x^16 - 101610*x^17 + 519331*x^18 - 707969*x^19 + 601249*x^20 - 284943*x^21 - 68043*x^22 + 297023*x^23 - 346370*x^24 + 265550*x^25 - 140577*x^26 + 31503*x^27 + 64681*x^28 - 166424*x^29 + 234520*x^30 - 218182*x^31 + 130432*x^32 - 29144*x^33 - 33391*x^34 + 38482*x^35 - 12237*x^36 - 2050*x^37 - 6144*x^38 + 18593*x^39 - 21514*x^40 + 11634*x^41 + 3351*x^42 - 13907*x^43 + 12096*x^44 + 2302*x^45 - 8825*x^46 + 570*x^47 + 4681*x^48 - 1695*x^49 - 1519*x^50 + 1290*x^51 + 64*x^52 - 224*x^53 + 44*x^54 - 12*x^55)) / (1 - 27*x + 334*x^2 - 2515*x^3 + 12906*x^4 - 47836*x^5 + 132248*x^6 - 276956*x^7 + 438796*x^8 - 508406*x^9 + 365771*x^10 + 36865*x^11 - 648120*x^12 + 1344653*x^13 - 1932847*x^14 + 2126787*x^15 - 1632701*x^16 + 408884*x^17 + 1117382*x^18 - 2223607*x^19 + 2392085*x^20 - 1636807*x^21 + 418146*x^22 + 665251*x^23 - 1211688*x^24 + 1191386*x^25 - 838060*x^26 + 416174*x^27 - 41907*x^28 - 323733*x^29 + 664097*x^30 - 810808*x^31 + 657803*x^32 - 319442*x^33 + 14159*x^34 + 120746*x^35 - 95202*x^36 + 22341*x^37 - 7930*x^38 + 47294*x^39 - 74720*x^40 + 62640*x^41 - 19120*x^42 - 28394*x^43 + 46822*x^44 - 21864*x^45 - 18416*x^46 + 20930*x^47 + 6617*x^48 - 14093*x^49 + 982*x^50 + 5867*x^51 - 2682*x^52 - 642*x^53 + 608*x^54 - 88*x^55 + 12*x^56).

Extensions

Edited by Ralf Stephan, Feb 07 2014
Extended by Ray Chandler, Jul 16 2015

A167011 Number of Level 1 hexagonal polyominoes with cheesy blocks and n cells.

Original entry on oeis.org

1, 3, 11, 44, 184, 784, 3363, 14451, 62097, 266716, 1145074, 4914448, 21087401, 90472315, 388129627, 1665025084, 7142592112, 30639836360, 131436162099, 563822359859, 2418629133001, 10375190596724, 44506436288882, 190919170388912, 818985577308225, 3513200788519075
Offset: 1

Views

Author

Jonathan Vos Post, Oct 26 2009

Keywords

Comments

From Table 1, p.24, of Feretic. By level 0 cheesy polyominoes, and so too by level 0 polyominoes with cheesy blocks, Feretic appears to mean the usual column-convex polyominoes (A059716). See the paper for his definition.

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{9,-27,32,-13,3,1},{1,3,11,44,184,784},26] (* Ray Chandler, Jul 16 2015 *)
    Rest[CoefficientList[Series[x*(-1+6x-11x^2+6x^3-2x^4)/(-1+9x-27x^2+32x^3-13x^4+3x^5+x^6),{x,0,26}],x]] (* Ray Chandler, Jul 16 2015 *)

Formula

G.f.: x(-1+6x-11x^2+6x^3-2x^4)/(-1+9x-27x^2+32x^3-13x^4+3x^5+x^6).

Extensions

Edited by Ralf Stephan, Feb 07 2014

A187077 Number of row-convex polyplets with n cells.

Original entry on oeis.org

1, 4, 18, 83, 385, 1788, 8305, 38575, 179170, 832189, 3865253, 17952864, 83385309, 387298083, 1798875698, 8355202169, 38807241321, 180247221864, 837190686169, 3888482927823, 18060759310562, 83886449530197, 389625723579965
Offset: 1

Views

Author

David Bevan, Mar 03 2011

Keywords

Comments

Equivalent to a sequence of row-convex polyhexes (A059716).

Examples

			a(3) = 18 = A006770(3)-2 omits the two 3-plets with non-convex rows (V and inverted V).
		

Crossrefs

Cf. A006770 (all fixed polyplets); A059716 (row-convex polyhexes); A001169 (row-convex polyominoes).

Programs

  • Mathematica
    a[n_]:={1,4,18,83}[[n]]/;n<5; a[n_]:=a[n]=7a[n-1]-13a[n-2]+10a[n-3]-2a[n-4]; Array[a, 23]

Formula

G.f.: -((x(x-1)^3)/(1-7x+13x^2-10x^3+2x^4)).
a(n) = 7a(n-1)-13a(n-2)+10a(n-3)-2a(n-4) for n > 4.

A068091 Number of board-pair-pile hexagonal polyominoes with n cells.

Original entry on oeis.org

1, 3, 11, 44, 186, 814, 3648, 16611, 76437, 354112, 1647344, 7682237, 35873310, 167625690, 783470179, 3662035980, 17115684065, 79986841677, 373759118882, 1746296080947
Offset: 1

Views

Author

Moa Apagodu, Mar 22 2002 and Oct 31 2002

Keywords

Examples

			This sequence first diverges from A059716 at n = 4. a(4) is 2 greater than A059716(4) because a(4) counts the following 2 fixed polyhexes of 4 cells that contain a column with two contiguous blocks of cells:
     _    _
   _/ \  / \_
  / \_/  \_/ \
  \_/      \_/
  / \_    _/ \
  \_/ \  / \_/
    \_/  \_/
This sequence first diverges from A001207 at n = 7. a(7) is 4 less than A001207(7) because a(7) does not count the following 4 fixed polyhexes of 7 cells that contain a column with more than two contiguous blocks of cells:
     _    _        _        _
   _/ \  / \_    _/ \      / \_
  / \_/  \_/ \  / \_/      \_/ \
  \_/      \_/  \_/          \_/
  / \_    _/ \  / \_        _/ \
  \_/ \  / \_/  \_/ \_    _/ \_/
  / \_/  \_/ \    \_/ \  / \_/
  \_/      \_/      \_/  \_/
  / \_    _/ \     _/ \  / \_
  \_/ \  / \_/    / \_/  \_/ \
    \_/  \_/      \_/      \_/
		

Crossrefs

Programs

  • Maple
    The sequence is generated by a Maple program that accompanies the paper "Counting Hexagonal Lattice Animals using Umbral-Transfer-Matrix Method (UTMM)"

A157608 Array read by antidiagonals, giving number of fixed hexagonal polyominoes of height up to n/2 and with hexagonal cell count k.

Original entry on oeis.org

0, 1, 0, 1, 0, 0, 1, 2, 0, 0, 1, 3, 2, 0, 0, 1, 3, 6, 2, 0, 0, 1, 3, 10, 11, 2, 0, 0, 1, 3, 11, 25, 19, 2, 0, 0, 1, 3, 11, 37, 61, 32, 2, 0, 0, 1, 3, 11, 43, 111, 142, 53, 2, 0, 0, 1, 3, 11, 44, 153, 320, 323, 87, 2, 0, 0, 1, 3, 11, 44, 177, 514, 896, 723, 142, 2, 0, 0
Offset: 1

Views

Author

Jonathan Vos Post, Mar 02 2009

Keywords

Examples

			The array begins:
================================================
n=1 | 0 | 0 |  0 |  0 |   0 |   0 |   0 |    0 |
n=2 | 1 | 0 |  0 |  0 |   0 |   0 |   0 |    0 |
n=3 | 1 | 2 |  2 |  2 |   2 |   2 |   2 |    2 |
n=4 | 1 | 3 |  6 | 11 |  19 |  32 |  53 |   87 |
n=5 | 1 | 3 | 10 | 25 |  61 | 142 | 323 |  723 |
n=6 | 1 | 3 | 11 | 37 | 111 | 320 | 896 | 2461 |
================================================
		

Crossrefs

Programs

Formula

T(n, k) = A001207(k) for n >= 2*k. - Andrey Zabolotskiy, Aug 31 2024

Extensions

Definition not clear to me! "Height" refers to the lattice or to the polyominoes? - N. J. A. Sloane, Mar 14 2009
Name clarified and more terms added by Andrey Zabolotskiy, Aug 24 2024

A225114 Number of skew partitions of n whose diagrams have no empty rows and columns.

Original entry on oeis.org

1, 1, 3, 9, 28, 87, 272, 850, 2659, 8318, 26025, 81427, 254777, 797175, 2494307, 7804529, 24419909, 76408475, 239077739, 748060606, 2340639096, 7323726778, 22915525377, 71701378526, 224349545236, 701976998795, 2196446204672, 6872555567553, 21503836486190, 67284284442622, 210528708959146
Offset: 0

Views

Author

Joerg Arndt, Apr 29 2013

Keywords

Comments

A skew partition S of size n is a pair of partitions [p1,p2] where p1 is a partition of the integer n1, p2 is a partition of the integer n2, p2 is an inner partition of p1, and n=n1-n2. We say that p1 and p2 are respectively the inner and outer partitions of S. A skew partition can be depicted by a diagram made of rows of cells, in the same way as a partition. Only the cells of the outer partition p1 which are not in the inner partition p2 appear in the picture. [from the Sage manual, see links]

Examples

			The a(4)=28 skew partitions of 4 are
01:  [[4], []]
02:  [[3, 1], []]
03:  [[4, 1], [1]]
04:  [[2, 2], []]
05:  [[3, 2], [1]]
06:  [[4, 2], [2]]
07:  [[2, 1, 1], []]
08:  [[3, 2, 1], [1, 1]]
09:  [[3, 1, 1], [1]]
10:  [[4, 2, 1], [2, 1]]
11:  [[3, 3], [2]]
12:  [[4, 3], [3]]
13:  [[2, 2, 1], [1]]
14:  [[3, 3, 1], [2, 1]]
15:  [[3, 2, 1], [2]]
16:  [[4, 3, 1], [3, 1]]
17:  [[2, 2, 2], [1, 1]]
18:  [[3, 3, 2], [2, 2]]
19:  [[3, 2, 2], [2, 1]]
20:  [[4, 3, 2], [3, 2]]
21:  [[1, 1, 1, 1], []]
22:  [[2, 2, 2, 1], [1, 1, 1]]
23:  [[2, 2, 1, 1], [1, 1]]
24:  [[3, 3, 2, 1], [2, 2, 1]]
25:  [[2, 1, 1, 1], [1]]
26:  [[3, 2, 2, 1], [2, 1, 1]]
27:  [[3, 2, 1, 1], [2, 1]]
28:  [[4, 3, 2, 1], [3, 2, 1]]
		

Programs

  • PARI
    \\ The following program is significantly faster.
    A225114(n)=
    {
        my( C=vector(n, j, 1) );
        my(m=n, z, t, ret);
        while ( 1,  /* for all compositions C[1..m] of n */
    \\        print( vector(m, n, C[n] ) ); /* print composition */
            t = prod(j=2,m, min(C[j-1], C[j]) + 1 );  /* A225114 */
    \\        t = prod(j=2,m, min(C[j-1], C[j]) + 0 );  /* A006958 */
    \\        t = prod(j=2,m, C[j-1] + C[j] + 0 );  /* A059716 */
    \\        t = prod(j=2,m, C[j-1] + C[j] + 1 );  /* A187077 */
    \\        t = sum(j=2,m, C[j-1] > C[j] );  /* A045883 */
            ret += t;
            if ( m<=1, break() ); /* last composition? */
            /* create next composition: */
            C[m-1] += 1;
            z = C[m];
            C[m] = 1;
            m += z - 2;
        );
        return(ret);
    }
    for (n=0, 30, print1(A225114(n),", "));
    \\ Joerg Arndt, Jul 09 2013
  • Sage
    [SkewPartitions(n).cardinality() for n in range(16)]
    

Formula

Conjectured g.f.: 1/(2 - 1/(1 - x/(1 - x/(1 - x^2/(1 - x^2/(1 - x^3/(1 - x^3/(1 - ...)))))))). - Mikhail Kurkov, Sep 03 2024

Extensions

Edited by Max Alekseyev, Dec 22 2015

A319322 Number of row convex polyhexes with n cells.

Original entry on oeis.org

1, 3, 11, 44, 184, 784, 3370, 14544, 62862, 271804, 1175133, 5079516, 21951384, 94847528, 409767878, 1770177486
Offset: 1

Views

Author

David Bevan, Sep 18 2018

Keywords

Comments

A polyhex is considered to be row convex if cells take contiguous positions in each row. (Multiple cells in a row are not connected.)

Examples

			The only pentahexes that are not row convex are the shallow V shape and its 180-degree rotation. So a(5) = A001207(5) - 2 = 184.
		

Crossrefs

Cf. A001207 (fixed polyhexes), A059716 (column convex polyhexes).
Showing 1-9 of 9 results.