cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A118651 Numbers k such that k^2 is a palindrome when written in base 17.

Original entry on oeis.org

0, 1, 2, 3, 4, 6, 12, 18, 28, 36, 84, 108, 290, 307, 324, 341, 580, 597, 614, 1080, 1614, 1740, 1842, 2616, 3378, 3480, 3720, 4344, 4824, 4914, 5220, 5526, 6408, 9828, 10134, 10440, 14472, 17944, 19336, 24360, 27624, 29484, 31320, 33144, 33960
Offset: 1

Views

Author

Neven Juric (neven.juric(AT)apis-it.hr), May 12 2006

Keywords

Examples

			E.g. 4^2 = 16_10 = G_16, 6^2 = 36_10 = 22_17, etc.
		

Crossrefs

Cf. A029984 for base 3, A029986 for base 4, A029988 for base 5, A029990 for base 6, A029992 for base 7, A029805 for base 8, A029994 for base 9, A002778 for base 10, A029996 for base 11, A029733 for base 16

A060087 Numbers k such that k^2 is a palindromic square with an asymmetric root.

Original entry on oeis.org

1109111, 110091011, 111091111, 10109901101, 10110911101, 11000910011, 11010911011, 11100910111, 1010099010101, 1010109110101, 1011099011101, 1100009100011, 1101009101011, 1110009100111, 100109990011001
Offset: 1

Views

Author

Patrick De Geest, Feb 15 2001

Keywords

Comments

With 'asymmetric' is meant almost palindromic with a 'core' (pseudo-palindromic). The core '09' when transformed into '1n' (n=-1) makes the base number palindromic. E.g., 1109111 is in fact 11_09_111 -> 11_(10-1)_111 -> 11_1n_111 -> 111n111 and palindromic. Similarly core 099 becomes 10n, core 0999 becomes 100n, etc.

References

  • M. Keith, "Classification and Enumeration of Palindromic Squares," Journal of Recreational Mathematics, 22:2, pp. 124-132, 1990.

Crossrefs

A059745 Palindromic squares of sporadic type.

Original entry on oeis.org

676, 69696, 94249, 698896, 5221225, 6948496, 522808225, 617323716, 942060249, 637832238736, 1086078706801, 1615108015161, 4051154511504, 5265533355625, 9420645460249, 123862676268321, 144678292876441, 165551171155561, 900075181570009, 4099923883299904, 94206450305460249
Offset: 1

Views

Author

N. J. A. Sloane, Feb 21 2001

Keywords

References

  • C. Ashbacher, More on palindromic squares, J. Rec. Math. 22, no. 2 (1990), 133-135. [A scan of the first page of this article is included with the last page of the Keith (1990) scan]
  • J. K. R. Barnett, "Tables of Square Palindromes in Bases 2 and 10," Journal of Recreational Mathematics, 23:1, pp. 13-18, 1991.
  • M. Keith, "Classification and Enumeration of Palindromic Squares," Journal of Recreational Mathematics, 22:2, pp. 124-132, 1990.
  • R. Ondrejka, "A Palindrome (151) of Palindromic Squares," Journal of Recreational Mathematics, 20:1, pp. 68-71, 1988.

Crossrefs

Formula

a(n) = A059744(n)^2. - Hugo Pfoertner, Oct 03 2023

Extensions

More terms from WorldOfNumbers website, communicated by Hugo Pfoertner, Oct 03 2023

A060088 Palindromic squares with an asymmetric square root.

Original entry on oeis.org

1230127210321, 12120030703002121, 12341234943214321, 102210100272001012201, 102230523292325032201, 121020021070120020121, 121240161292161042121, 123230205292502032321, 1020300010207020100030201
Offset: 1

Views

Author

Patrick De Geest, Feb 15 2001

Keywords

Comments

With 'asymmetric' is meant almost palindromic with a 'core' (pseudo-palindromic). The core '09' when transformed into '1n' (n=-1) makes the base number palindromic. E.g., 1109111 is in fact 11_09_111 -> 11_(10-1)_111 -> 11_1n_111 -> 111n111 and palindromic. Similarly core 099 becomes 10n, core 0999 becomes 100n, etc.

References

  • M. Keith, "Classification and Enumeration of Palindromic Squares," Journal of Recreational Mathematics, 22:2, pp. 124-132, 1990.

Crossrefs

A065378 Primes p such that p^2 is a palindromic square.

Original entry on oeis.org

2, 3, 11, 101, 307, 30001253, 100111001, 110111011, 111010111, 111091111, 1011099011101, 1100011100011, 1100101010011, 1101010101011, 100110101011001, 100110990111001, 101000010000101, 101011000110101, 101110000011101
Offset: 1

Views

Author

Patrick De Geest, Nov 03 2001

Keywords

Comments

Record prime base number of a sporadic palindromic square is 13661181333262459.

Examples

			E.g. a(6) = 900075181570009 = p^2 with p = 30001253 and prime.
		

Crossrefs

Programs

  • Mathematica
    t={}; Do[p=Prime[n]; If[FromDigits[Reverse[IntegerDigits[p^2]]]==p^2,AppendTo[t,p]],{n,10^7}]; t (* Jayanta Basu, May 11 2013 *)

Extensions

Corrected by Jayanta Basu, May 11 2013

A251673 Numbers that are not palindromes, but whose squares are palindromes.

Original entry on oeis.org

26, 264, 307, 836, 2285, 2636, 22865, 24846, 30693, 798644, 1042151, 1109111, 1270869, 2012748, 2294675, 3069307, 11129361, 12028229, 12866669, 30001253, 64030648, 110091011, 111091111, 306930693, 2062386218, 2481623254, 10106064399, 10109901101, 10110911101
Offset: 1

Views

Author

Arkadiusz Wesolowski, Dec 06 2014

Keywords

Comments

The corresponding sequence excluding numbers in A059744 starts: 1109111, 110091011, 111091111, 10109901101, 10110911101, ....
The sequence is infinite, for instance it contains 111*100^k + 91*10^k + 111 for k > 3. - Emmanuel Vantieghem, Sep 30 2017

Crossrefs

Supersequence of A059744. Cf. A029742, A002778.

Programs

  • Magma
    [n: n in [0..3069307] | not Intseq(n, 10) eq Reverse(Intseq(n, 10)) and Intseq(n^2, 10) eq Reverse(Intseq(n^2, 10))];
    
  • Mathematica
    a251673[n_Integer] := Select[Range[n], IntegerDigits[#] != Reverse@IntegerDigits[#] && IntegerDigits[#^2] == Reverse@IntegerDigits[#^2] &]; a251673[10^7] (* Michael De Vlieger, Dec 14 2014 *)
  • PARI
    for(n=1,10^6,d=digits(n);d2=digits(n^2);if(Vecrev(d2)==d2&&Vecrev(d)!=d,print1(n,", "))) \\ Derek Orr, Dec 13 2014

Formula

A029742 INTERSECT A002778.

A065379 Palindromic squares with a prime root.

Original entry on oeis.org

4, 9, 121, 10201, 94249, 900075181570009, 12124434743442121, 12323244744232321, 12341234943214321, 1022321210249420121232201, 1210024420147410244200121, 1210222232227222322220121
Offset: 1

Views

Author

Patrick De Geest, Nov 03 2001

Keywords

Comments

Record sporadic palindromic square with a prime root is 186627875420278656872024578726681.

Examples

			a(6) = 900075181570009 = p^2 with p = 30001253, a prime.
		

Crossrefs

A258382 Non-palindromic numbers n such that the square root of n multiplied by the reversal of n is a palindrome.

Original entry on oeis.org

144, 441, 1584, 4851, 10404, 12544, 14544, 14884, 15984, 27648, 40401, 44521, 44541, 48841, 48951, 84672, 114444, 137984, 144144, 159984, 409739, 441441, 444411, 489731, 489951, 937904, 1004004, 1022121, 1024144, 1042441, 1044484, 1050804
Offset: 1

Views

Author

Pieter Post, May 28 2015

Keywords

Comments

This sequence is infinite, because it contains several infinite subsequences such as: sqrt(1584*4851)=2772, sqrt(15984*48951)=27972, sqrt(159..984*489...951)=279...972.
It appears that the first (or last) digit is never 5, 6 or 7.

Examples

			27648 is in the sequence because sqrt(27648*84672)=48384.
		

Crossrefs

Programs

  • Mathematica
    palQ[n_] := Block[{d = IntegerDigits@ n}, And[IntegerQ@ n, d == Reverse@ d]]; Select[Range@ 100000, And[! palQ@ #, palQ[Sqrt[# FromDigits@ Reverse@ IntegerDigits@ #]]] &] (* Michael De Vlieger, May 28 2015 *)
  • PARI
    rev(k) = subst(Polrev(digits(k)), x, 10);
    isok(n) = {rn = rev(n); if (rn != n, nrn = n*rn; issquare(nrn) && (y=sqrtint(nrn)) && (y == rev(y)););} \\ Michel Marcus, May 29 2015
  • Python
    for n in range (1, 10**9):
        y=int(str(n)[::-1])
        ya=int(pow(n*y,1/2))
        if ya==int(str(ya)[::-1]) and n*y==ya**2 and n!=y:
            print (n)
    

Formula

Numbers n such that sqrt(n*reversal(n)) is a palindrome, where n is not a palindrome.
Showing 1-8 of 8 results.