cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 15 results. Next

A059763 Primes starting a Cunningham chain of the first kind of length 4.

Original entry on oeis.org

509, 1229, 1409, 2699, 3539, 6449, 10589, 11549, 11909, 12119, 17159, 19709, 19889, 22349, 26189, 27479, 30389, 43649, 55229, 57839, 60149, 71399, 74699, 75329, 82499, 87539, 98369, 101399, 104369, 112919, 122099, 139439, 148829, 166739
Offset: 1

Views

Author

Labos Elemer, Feb 20 2001

Keywords

Comments

Initial (unsafe) primes of Cunningham chains of first type with length exactly 4. Primes in A059453 that survive as primes just three "2p+1 iterations", forming chains of exactly 4 terms.
The definition indicates each chain is exactly 4 primes long (i.e., the chain cannot be a subchain of a longer one). That is why this sequence is different from A023272, which also gives primes included in longer chains ("starting" them or not).
Prime p such that {(p-1)/2, p, 2p+1, 4p+3, 8p+7, 16p+15} = {composite, prime, prime, prime, prime, composite}.

Examples

			1229 is a term because, through 2p+1, 1229 -> 2459 -> 4919 -> 9839 and the chain ends here since 2*9839 + 1 = 11*1789 is composite.
		

Crossrefs

Programs

  • Maple
    isA059763 := proc(p) local pitr,itr ; if isprime(p) then if isprime( (p-1)/2 ) then RETURN(false) ; else pitr := p ; for itr from 1 to 3 do pitr := 2*pitr+1 ; if not isprime(pitr) then RETURN(false) ; fi ; od: pitr := 2*pitr+1 ; if isprime(pitr) then RETURN(false) ; else RETURN(true) ; fi ; fi ; else RETURN(false) ; fi ; end: for i from 2 to 100000 do p := ithprime(i) ; if isA059763(p) then printf("%d,",p) ; fi ; od: # R. J. Mathar, Jul 23 2008

Extensions

Edited and extended by R. J. Mathar, Jul 23 2008, Aug 18 2008

A059764 Initial (unsafe) primes of Cunningham chains of first type with length exactly 5. Primes in A059453 that survive as primes just four "2p+1 iterations", forming chains of exactly 5 terms.

Original entry on oeis.org

2, 53639, 53849, 61409, 66749, 143609, 167729, 186149, 206369, 268049, 296099, 340919, 422069, 446609, 539009, 594449, 607319, 658349, 671249, 725009, 775949, 812849, 819509, 926669, 1008209, 1092089, 1132949, 1271849
Offset: 1

Views

Author

Labos Elemer, Feb 20 2001

Keywords

Comments

Primes p such that {(p-1)/2, p, 2p+1, 4p+3, 8p+7, 16p+15, 32p+31} = {nonprime, prime, prime, prime, prime, prime, composite}.

Examples

			2 is here because (2-1)/2 = 1/2 and 32*2+31 = 95 are not primes, while 2, 5, 11, 23, and 47 give a first-kind Cunningham chain of 5 primes which cannot be continued.
53639 is here because through <2p+1>, 53639 -> 107279 -> 214559 -> 429119 -> 858239 and the chain ends here (with this operator).
		

Crossrefs

Programs

  • Mathematica
    l5Q[n_]:=Module[{a=PrimeQ[(n-1)/2],b=PrimeQ[ NestList[2#+1&,n,5]]}, Join[{a},b]=={False,True,True,True,True,True,False}]; Select[Range[ 1300000],l5Q] (* Harvey P. Dale, Oct 14 2012 *)

Extensions

Definition corrected by Alexandre Wajnberg, Aug 31 2005
Entry revised by N. J. A. Sloane, Apr 01 2006

A059766 Initial (unsafe) primes of Cunningham chains of first type with length exactly 6.

Original entry on oeis.org

89, 63419, 127139, 405269, 810809, 1069199, 1178609, 1333889, 1598699, 1806089, 1958249, 2606069, 2848949, 3241289, 3339989, 3784199, 3962039, 4088879, 4444829, 4664249, 4894889, 4897709, 5132999, 5215499, 5238179, 6026309, 6059519, 6088529, 6490769, 6676259
Offset: 1

Views

Author

Labos Elemer, Feb 21 2001

Keywords

Comments

Special terms of A059453. Not identical to A023330 of which 1122659, 2164229, 2329469, ..., etc. are omitted since they have exact length 7 or larger.
Unsafe primes starting complete chains of length 6.

Examples

			89 is a term because (89-1)/2 = 44 and 64*89+63 = 5759 = 13*443 are composites, while 89, 179, 359, 719, 1439, and 2879 are primes.
1122659 is not a term because it initiates a chain of length 7.
4658939 is not a term because (4658939-1)/2 = 2329469 is prime. - _Sean A. Irvine_, Oct 09 2022
		

Crossrefs

Extensions

Entry revised by N. J. A. Sloane Apr 01 2006
a(12) onward corrected and extended by Sean A. Irvine, Oct 09 2022

A110024 Smallest primes starting a complete three iterations Cunningham chain of the second kind.

Original entry on oeis.org

2131, 2311, 6211, 7411, 10321, 18121, 22531, 23011, 24391, 29671, 31771, 35311, 41491, 46411, 54601, 56311, 60331, 61381, 67651, 78031, 85381, 96931, 99871, 109471, 126001, 134731, 156691, 162451, 165331, 170851, 185131, 205171, 224401
Offset: 1

Views

Author

Alexandre Wajnberg, Sep 03 2005

Keywords

Comments

The word "complete" indicates each chain is exactly 4 primes long (i.e., the chain cannot be a subchain of another one). Other sequences give also primes included in longer chains ("starting" them or not).
Terms computed by Gilles Sadowski.

Examples

			2311 is here because, through the operator <*2-1> of the chains of the second kind,
2311 -> 4621 -> 9241 -> 18481 and the chain ends here (with this operator).
		

Crossrefs

Extensions

Edited and extended by R. J. Mathar, May 08 2009

A110022 Primes starting a Cunningham chain of the second kind of length 5.

Original entry on oeis.org

1531, 6841, 15391, 44371, 57991, 83431, 105871, 145021, 150151, 199621, 209431, 212851, 231241, 242551, 291271, 319681, 346141, 377491, 381631, 451411, 481021, 506791, 507781, 512821, 537811, 588871, 680431, 727561, 749761, 782911, 787711
Offset: 1

Views

Author

Alexandre Wajnberg, Sep 03 2005

Keywords

Comments

The definition indicates that each chain is exactly 5 primes long (i.e. the chain cannot be a subchain of a longer one). That's why this sequence is different from A057328 which gives also primes included in longer chains (thus not "starting" them), as 16651, starting a seven primes chain, or 33301, second prime of the same seven primes chain.

Examples

			6841 is here because: 6841 through <2p-1> -> 13681-> 27361-> 54721-> 109441 and the chain ends here since 2*109441-1=13*113*149 is composite.
		

Crossrefs

Programs

  • Maple
    isA110022 := proc(p) local pitr,itr ; if isprime(p) then if isprime( (p+1)/2 ) then RETURN(false) ; else pitr := p ; for itr from 1 to 4 do pitr := 2*pitr-1 ; if not isprime(pitr) then RETURN(false) ; fi ; od: pitr := 2*pitr-1 ; if isprime(pitr) then RETURN(false) ; else RETURN(true) ; fi ; fi ; else RETURN(false) ; fi ; end: for i from 2 to 200000 do p := ithprime(i) ; if isA110022(p) then printf("%d,",p) ; fi ; od: # R. J. Mathar, Jul 23 2008

Extensions

Edited and extended by R. J. Mathar, Jul 23 2008

A110056 Least prime that ends a complete Cunningham chain (of the first kind) of length n.

Original entry on oeis.org

13, 7, 167, 4079, 47, 2879, 71850239, 2444789759, 21981381119, 13357981992959, 681004115066879, 1136001594224639, 16756459239477534719, 781558105952602767359
Offset: 1

Views

Author

Alexandre Wajnberg, Sep 04 2005

Keywords

Comments

"Complete" means that this chain is not part of a longer Cunningham chain of the first kind.
Next term is greater than 4*10^17.
A005602(13)-> 8181864863026139 -> ... -> a(13) = 16756459239477534719. [From Washington Bomfim, Oct 21 2009]

Examples

			41->83->167 is a Cunningham chain of the first kind. It is complete because neither (41-1)/2 nor 2*167+1 is prime. It is the first such chain of three primes, so a(3) = 167.
		

Crossrefs

Cf. A110059 for Cunningham chains of the second kind.
Cf. A005602 [From Washington Bomfim, Oct 21 2009]

Extensions

Edited and extended by David Wasserman, Aug 08 2006
a(13) and a(14) from Washington Bomfim, Oct 21 2009

A110059 Smallest prime ending a complete Cunningham chain of the second kind (2x-1) of length n.

Original entry on oeis.org

11, 13, 5, 17041, 24481, 12338881, 1065601, 1985902081, 219416417281, 105230562877441, 1422461638625281, 444124661486837761, 3105111850422067201
Offset: 1

Views

Author

Alexandre Wajnberg, Sep 04 2005

Keywords

Comments

"Complete" means that the chain is not part of a longer chain.
A005603 has the first prime of each chain.

Examples

			a(4)=17041 because 2131,4261,8521,17041 are prime, but the preceding and following numbers (1066,34081) are not.
		

Crossrefs

Extensions

Some terms computed by Gilles Sadowski.
Edited by Don Reble, May 16 2006

A110025 Smallest primes starting a complete three iterations Cunningham chain of the first or second kind.

Original entry on oeis.org

509, 1229, 1409, 2131, 2311, 2699, 3539, 6211, 6449, 7411, 10321, 10589, 11549, 11909, 12119, 17159, 18121, 19709, 19889, 22349, 22531, 23011, 24391, 26189, 27479, 29671, 30389, 31771, 35311, 41491, 43649, 46411, 54601, 55229, 56311
Offset: 1

Views

Author

Alexandre Wajnberg, Sep 03 2005

Keywords

Comments

Terms computed by Gilles Sadowski.

Examples

			1409 is here because, through the operator <2p+1> for chains of the first kind, 1409 -> 2819 -> 5639 -> 11279 and the chain ends here.
2131 is here because, through the operator <2p-1> for chains of the second kind, 2131 -> 4261 -> 8521 -> 17041 and the chain ends here.
		

Crossrefs

Formula

Union of A059763 and A110024. [R. J. Mathar, May 08 2009]

Extensions

Edited by R. J. Mathar, May 08 2009

A110027 Smallest primes starting a complete four iterations Cunningham chain of the first or second kind.

Original entry on oeis.org

2, 1531, 6841, 15391, 44371, 53639, 53849, 57991, 61409, 66749, 83431, 105871, 143609, 145021, 150151, 167729, 186149, 199621, 206369, 209431, 212851, 231241, 242551, 268049, 291271, 296099, 319681, 340919, 346141, 377491, 381631, 422069
Offset: 1

Views

Author

Alexandre Wajnberg, Sep 03 2005

Keywords

Comments

The word "complete" indicates each chain is exactly 5 primes long (i.e., the chain cannot be a subchain of another one).
Terms computed by Gilles Sadowski.

Crossrefs

Formula

Union of A059764 and A110022 . [R. J. Mathar, May 08 2009]

Extensions

Edited and extended by R. J. Mathar, May 08 2009

A176379 The smallest prime q which stays prime through at least two iterations of q -> := 2 * q + prime(n+1).

Original entry on oeis.org

2, 7, 2, 31, 2, 7, 11, 7, 19, 5, 5, 19, 2, 13, 13, 61, 11, 17, 61, 5, 5, 7, 139, 5, 19, 2, 103, 29, 7, 2, 109, 7, 59, 31, 41, 5, 5, 127, 13, 31, 5, 109, 2, 7, 41, 11, 2, 7, 101, 67, 79, 5, 31, 13, 37, 19, 11, 2, 109, 53, 7, 2, 19, 2, 127, 29, 5, 13, 59, 7, 19, 47, 47, 11, 13, 79, 17, 19, 89, 619
Offset: 1

Views

Author

Ulrich Krug (leuchtfeuer37(AT)gmx.de), Apr 16 2010

Keywords

Comments

Such q are generalized Cunningham primes: prime numbers p(1), ..., p(n):
q, f(q) = 2 * q + prime(n+1), f(f(q)) = 4 * q + 3 * prime(n+1) must be primes.
n = 0 is omitted as the first iteration 2 * q + prime(1) = 2 * (q+1) is generally even.
List of (q, first iteration, second iteration):
(2,7,17) (7,19,43) (2,11,29) (31,73,157) (2,17,47)
(7,31,79) (11,41,101) (7,37,97) (19,67,163) (5,41,113)
(5,47,131) (19,79,199) (2,47,137) (13,73,193) (13,79,211)
(61,181,421) (11,83,227) (17,101,269) (61,193,457) (5,83,239)
(5,89,257) (7,97,277) (139,367,823) (5,107,311) (19,139,379)
(2,107,317) (103,313,733) (29,167,443) (7,127,367) (2,131,389)
(109,349,829) (7,151,439) (59,257,653) (31,211,571) (41,233,617)
(5,167,491) (5,173,509) (127,421,1009) (13,199,571) (31,241,661)
(5,191,563) (109,409,1009) (2,197,587) (7,211,619) (41,281,761)
(11,233,677) (2,227,677) (7,241,709) (101,431,1091) (67,367,967)

Examples

			n=1, prime(n+1) = 3: checking q=2: 2 * 2 + 3 = 7, 2 * 7 + 3 = 17, q=2 is first term.
n=2: checking q=7: 2 * 7 + 5 = 19, 2 * 19 + 5 = 43, 7 is 2nd term.
n=3: checking q=2: 2 * 2 + 7 = 11, 2 * 11 + 7 = 29, 2 is 3rd term.
		

References

  • Joe Buhler, Algorithmic Number Theory, Third International Symposium, ANTS-III, Springer New York, 1998.
  • R. K. Guy, Unsolved problems in number theory, Springer-Verlag, New York, 1994.
  • Paulo Ribenboim, Die Welt der Primzahlen, Geheimnisse und Rekorde, Springer-Verlag GmbH & Co. KG, 2006.

Crossrefs

Programs

  • Maple
    A176379 := proc(n)
        pk1 := ithprime(n+1) ;
        for pidx from 1 do
            p := ithprime(pidx) ;
            pitr := 2*p+pk1 ;
            if not isprime(pitr) then
                next ;
            end if;
            pitr := 2*pitr+pk1 ;
            if not isprime(pitr) then
                next ;
            else
                return p ;
            end if;
        end do:
    end proc:
    seq(A176379(n),n=1..20) ; # R. J. Mathar, May 21 2025

Formula

a(n) = smallest prime q such that 2*q+prime(n+1) is prime and 2*(2*q+prime(n+1))+prime(n+1) is also prime.
Showing 1-10 of 15 results. Next