cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A249669 a(n) = floor(prime(n)^(1+1/n)).

Original entry on oeis.org

4, 5, 8, 11, 17, 19, 25, 27, 32, 40, 42, 49, 54, 56, 60, 67, 74, 76, 83, 87, 89, 96, 100, 107, 116, 120, 122, 126, 128, 132, 148, 152, 159, 160, 171, 173, 179, 186, 190, 196, 203, 204, 215, 217, 221, 223, 236, 249, 253, 255, 259, 265, 267, 278, 284, 290, 296, 298, 304, 308, 310, 321
Offset: 1

Views

Author

M. F. Hasler, Nov 03 2014

Keywords

Comments

Firoozbakht's conjecture (prime(n)^(1/n) is a decreasing function), is equivalent to say that prime(n+1) <= a(n). (One has equality for n=2 and n=4.) See also A182134 and A245396.
This is not A059921 o A000040, i.e., a(n) != A059921(prime(n)), since the base is prime(n) but the exponent is n.
A245396(n) = A007917(a(n)). - Reinhard Zumkeller, Nov 16 2014

Crossrefs

Programs

  • Haskell
    a249669 n = floor $ fromIntegral (a000040 n) ** (1 + recip (fromIntegral n))
    -- Reinhard Zumkeller, Nov 16 2014
  • Magma
    [Floor(NthPrime(n)^(1+1/n)): n in [1..70]]; // Vincenzo Librandi, Nov 04 2014
    
  • Maple
    seq(floor(ithprime(n)^(1+1/n)), n=1..100); # Robert Israel, Nov 26 2015
  • PARI
    a(n)=prime(n)^(1+1/n)\1
    

Formula

a(n) = prime(n) + (log(prime(n)))^2 - log(prime(n)) + O(1), see arXiv:1506.03042, Theorem 5. - Alexei Kourbatov, Nov 26 2015

A269020 a(n) = ceiling(n^(1+1/n)).

Original entry on oeis.org

1, 3, 5, 6, 7, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70
Offset: 1

Views

Author

Bob Selcoe, Feb 17 2016

Keywords

Examples

			a(5)=7 because 5^(6/5) ~ 6.8986; a(6)=9 because 6^(7/6) ~ 8.088.
		

Crossrefs

Cf. A059921 (floor(n^(1+1/n))), A269023 (complementary sequence).

Programs

  • Magma
    [Ceiling(n^(1+1/n)): n in [1..70]]; // Vincenzo Librandi, Feb 18 2016
    
  • Mathematica
    Table[Ceiling[n^(1 + 1 / n)], {n, 100}] (* Vincenzo Librandi, Feb 18 2016 *)
  • Python
    from sympy import integer_nthroot
    def A269020(n):
        a, b = integer_nthroot(n**(n+1),n)
        return a+(b^1) # Chai Wah Wu, Sep 04 2024

Formula

a(n) = A059921(n) + 1, n>=2.

A269023 Complement of A269020: numbers not of the form ceiling(n^(1+1/n)).

Original entry on oeis.org

2, 4, 8, 19, 51, 141, 392, 1079, 2957, 8072, 21987, 59825, 162695, 442342, 1202521, 3268920, 8885999, 24154826, 65659826, 178482140
Offset: 1

Views

Author

Bob Selcoe, Feb 18 2016

Keywords

Comments

The limiting ratio is e (see comment in A059921).

Examples

			The term 8 appears because A269020(5)=7 and A269020(6)=9.
		

Crossrefs

Programs

  • Mathematica
    Complement[Range[1, 100000], Table[Ceiling[n^(1 + 1/n)], {n, 100000}]] (* Vaclav Kotesovec, Mar 12 2016 *)
  • PARI
    a269020(n) = ceil(n^(1+1/n))
    for(n=1, 1e20, if(a269020(n+1)-a269020(n) > 1, print1(a269020(n)+1, ", "))) \\ Felix Fröhlich, Mar 12 2016
    
  • Python
    from itertools import count
    def A269023(n):
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        def f(x):
            if x==1: return n+1
            z = x**x
            for y in count(x,-1):
                if y**(y+1) <= z:
                    return n+y
                z //= x
        return bisection(f,n,n) # Chai Wah Wu, Sep 10 2024

Extensions

a(18)-a(20) from Felix Fröhlich, Mar 12 2016

A095394 a(n) = Floor[n^((n)/(n+1))], integer part of n^x where x = n/(n+1) < 1.

Original entry on oeis.org

1, 1, 2, 3, 3, 4, 5, 6, 7, 8, 9, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 61, 62, 63, 64, 65, 66, 67, 68
Offset: 1

Views

Author

Labos Elemer, Jun 17 2004

Keywords

Comments

1, 3, 9, 24, 61, 160, 420, 1120, ... appear in the sequence twice. The ratio of such numbers converges to e. [Charles R Greathouse IV, Oct 26 2011]

Crossrefs

Cf. A059921.

Programs

  • Mathematica
    Table[Floor[N[x^((x+1)/(x)), 50]], {x, 1, 15}]
  • PARI
    a(n)=floor(n^(n/(n+1.))) \\ Charles R Greathouse IV, Oct 26 2011

A095395 a(n) = floor(n^((n+1)/(n))) - floor(n^((n)/(n+1))).

Original entry on oeis.org

0, 1, 2, 2, 3, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9
Offset: 1

Views

Author

Labos Elemer, Jun 17 2004

Keywords

Programs

  • Mathematica
    Table[Floor[N[x^((x+1)/(x)), 50]]-Floor[N[x^((x)/(x+1)), 50]], {x, 1, 15}]

Formula

a(n) = A059921(n) - A095394(n).
Showing 1-5 of 5 results.