A059988 a(n) = (10^n - 1)^2.
0, 81, 9801, 998001, 99980001, 9999800001, 999998000001, 99999980000001, 9999999800000001, 999999998000000001, 99999999980000000001, 9999999999800000000001, 999999999998000000000001, 99999999999980000000000001, 9999999999999800000000000001, 999999999999998000000000000001
Offset: 0
Examples
From _Reinhard Zumkeller_, May 31 2010: (Start) n=1: ..................... 81 = 9^2; n=2: ................... 9801 = 99^2; n=3: ................. 998001 = 999^2; n=4: ............... 99980001 = 9999^2; n=5: ............. 9999800001 = 99999^2; n=6: ........... 999998000001 = 999999^2; n=7: ......... 99999980000001 = 9999999^2; n=8: ....... 9999999800000001 = 99999999^2; n=9: ..... 999999998000000001 = 999999999^2. (End)
References
- Albert H. Beiler, Recreations in the theory of numbers, New York, Dover, (2nd ed.) 1966. See Table 32 at p. 61.
- Walther Lietzmann, Lustiges und Merkwuerdiges von Zahlen und Formen, (F. Hirt, Breslau 1921-43), p. 149.
- Alfred S. Posamentier, Math Charmers, Tantalizing Tidbits for the Mind, Prometheus Books, NY, 2003, page 34.
Links
- Harry J. Smith, Table of n, a(n) for n = 0..200
- Index entries for linear recurrences with constant coefficients, signature (111,-1110,1000).
Crossrefs
Programs
-
Maple
A059988:=n->(10^n-1)^2; seq(A059988(n), n=0..20); # Wesley Ivan Hurt, Nov 21 2013
-
Mathematica
Table[(10^n-1)^2, {n,0,20}] (* Wesley Ivan Hurt, Nov 21 2013 *)
-
PARI
a(n) = { (10^n - 1)^2 } \\ Harry J. Smith, Jul 01 2009
-
Python
def a(n): return (10**n - 1)**2 # Martin Gergov, Sep 10 2022
Formula
a(n) = {999... (n times)}^2 = {999... (n times), 000... (n times)} - {999... (n times)}. For example, 999^2 = 999000 - 999 = 998001. - Kyle D. Balliet, Mar 07 2009
a(n) = (A002283(n-1)*10 + 8) * 10^(n-1) + 1, for n>0. - Reinhard Zumkeller, May 31 2010
From Ilya Gutkovskiy, Apr 19 2016: (Start)
O.g.f.: 81*x*(1 + 10*x)/((1 - x)*(1 - 10*x)*(1 - 100*x)).
E.g.f.: (1 - 2*exp(9*x) + exp(99*x))*exp(x). (End)
Sum_{n>=1} 1/a(n) = (log(10)*(QPolyGamma(0, 1, 1/10) - log(10/9)) + QPolyGamma(1, 1, 1/10))/log(10)^2 = 0.012448721523422795191... . - Stefano Spezia, Jul 31 2024
a(n) = 111*a(n-1) - 1110*a(n-2) + 1000*a(n-3). - Elmo R. Oliveira, Aug 02 2025
Comments